Changes in lipid bilayer structure caused by the helix-to-sheet transition of an HIV-1 gp41 fusion peptide derivative ☆

July 28, 2017

Title

Changes in lipid bilayer structure caused by the helix-to-sheet transition of an HIV-1 gp41 fusion peptide derivative ☆

Author

William T. Heller, Durgesh K. Rai

Year

2017

Journal

Chemistry and Physics of Lipids

Abstract

HIV-1, like other enveloped viruses, undergoes fusion with the cell membrane to infect it. Viral coat proteins are thought to bind the virus to the membrane and actively fuse the viral and cellular membranes together. The actual molecular mechanism of fusion is challenging to visualize, resulting in the use of model systems. Here, the bilayer curvature modifying properties of a synthetic variant of the HIV-1 gp41 fusion peptide with lipid bilayer vesicles composed of a mixture of dimyristoyl phosphatidylcholine (DMPC) and dimyristoyl phosphatidylserine (DMPS) were studied. In 7:3 DMPC:DMPS vesicles made with deuterium-labeled DMPC, the peptide was observed to undergo a concentration-dependent conformational transition between an α-helix and an antiparallel β-sheet. Through the use of small-angle neutron scattering (SANS) and selective deuterium labeling, it was revealed that conformational transition of the peptide is also accompanied by a transition in the structure of the lipid bilayer. In addition to changes in the distribution of the lipid between the leaflets of the vesicle, the SANS data are consistent with two regions having different thicknesses. Of the two different bilayer structures, the one corresponding to the smaller area fraction, being ∼8% of the vesicle area, is much thicker than the remainder of the vesicle, which suggests that there are regions of localized negative curvature similar to what takes place at the point of contact between two membranes immediately preceding fusion.

Instrument

J-810

Keywords

Circular dichroism, Secondary structure, Vesicle interactions, Biochemistry