Computational design of symmetrical eight-bladed β-propeller proteins

April 9, 2019


Computational design of symmetrical eight-bladed β-propeller proteins


Hiroki Noguchi, Christine Addy, David Simoncini, Staf Wouters, Bram Mylemans, Luc Van Meervelt, Thomas Schiex, Kam Y. J. Zhang, Jeremy R. H. Tame, Arnout R. D. Voet






β-Propeller proteins form one of the largest families of protein structures, with a pseudo-symmetrical fold made up of subdomains called blades. They are not only abundant but are also involved in a wide variety of cellular processes, often by acting as a platform for the assembly of protein complexes. WD40 proteins are a subfamily of propeller proteins with no intrinsic enzymatic activity, but their stable, modular architecture and versatile surface have allowed evolution to adapt them to many vital roles. By computationally reverse-engineering the duplication, fusion and diversification events in the evolutionary history of a WD40 protein, a perfectly symmetrical homologue called Tako8 was made. If two or four blades of Tako8 are expressed as single polypeptides, they do not self-assemble to complete the eight-bladed architecture, which may be owing to the closely spaced negative charges inside the ring. A different computational approach was employed to redesign Tako8 to create Ika8, a fourfold-symmetrical protein in which neighbouring blades carry compensating charges. Ika2 and Ika4, carrying two or four blades per subunit, respectively, were found to assemble spontaneously into a complete eight-bladed ring in solution. These artificial eight-bladed rings may find applications in bionanotechnology and as models to study the folding and evolution of WD40 proteins.




Circular dichroism, Secondary structure, Protein folding, Thermal stability, Thermodynamics, Biochemistry