Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy

July 28, 2017

Title

Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy

Author

Li-Na Wen, Meng-Xia Xie

Year

2014

Journal

Biochimie

Abstract

The binding properties of five G-quadruplex oligonucleotides (humtel24, k-ras32, c-myc22, c-kit1 and c-kit2) with polyamines have been investigated by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism, melting temperature, atomic force microscopy (AFM) and molecular simulation. The MS results demonstrated that the polyamines and G-quadruplex DNA can form complexes with high affinity, and one molecule of G-quadruplex DNA can combine several molecules (1–5) of polyamines. The binding affinities of the polyamines to DNA were in the order of spermine > spermidine > putrescine. After binding with polyamines, the conformations of the G-quadruplex DNA were significantly changed, and spermine can induce the configurations of k-ras32 and c-kit1 to deviate from their G-quadruplex structures at high concentrations. In the presence of K+, the conformations of G-quadruplex DNA were stabilized, while polyamines can also induced alterations of their configurations. Melting temperature experiments suggested that the Tm of the DNA–polyamine complexes obviously increased both in the absence and presence of K+. The AFM results indicated that polyamines can induce aggregation of G-quadruplex DNA. Above results illustrated that the polyamines bound with the phosphate backbone and the base-pairs of G-quadruplex structures. Combining with the molecular simulation, the binding mode of the G-quadruplex DNA and polyamines were discussed. The results obtained would be beneficial for understanding the biological and physiological functions of polyamines and provide useful information for development of antitumor drugs.

Instrument

J-815

Keywords

Circular dichroism, Ligand binding, Protein folding, Biochemistry