Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission

May 22, 2018

Title

Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission

Author

Mathew T. Hembury, Nataliia Beztsinna, Hamed Asadi, Joep van den Dikkenberg, Johannes D. Meeldijk, Wim E. Hennink, Tina Vermonden

Year

2018

Journal

Biomacromolecules

Abstract

Ultrasmall gold atom clusters (< 2 nm in diameter) or gold nanoclusters exhibit emergent photonic properties (near-infrared absorption and emission) compared to larger plasmonic gold particles, due to the significant quantization of their conduction band. While single gold nanoclusters properties and applications are being increasingly investigated, little is still known about their behaviour and properties when assembled into suprastructures and even less studies are investigating their use for biomedical applications. Here, a simple synthetic pathway combines gold nanoclusters with thermosensitive diblock copolymers of poly(ethylene glycol) (PEG) and poly(N-isopropylacrylamide) (PNIPAm) to form a new class of gold-polymer, micelle-forming, hybrid nanoparticle. The nanohybrids’ design is uniquely centred on enabling the temperature-dependent self-assembly of gold nanoclusters into the hydrophobic cores of micelles. This non-bulk assembly not only preserves but also enhances the attractive near-infrared photonics of the gold nanoclusters by significantly increasing their native fluorescent signal. In parallel to the fundamental insights into gold nanoclusters ordering and assembly, the gold-polymer nanohybrids also demonstrated great potential as fluorescent live-imaging probes in vitro. This innovative material design based on the temperature-dependent, self-assembly of gold nanoclusters within a polymeric micelle’s core shows great promise towards bioassays, nanosensors and nanomedicine.

Instrument

FP-8300

Keywords

Fluorescence, Photoluminescence, Nanostructures, Optical properties, Thermal stability, Polymers, Materials