Novel analogs of alloferon: Synthesis, conformational studies, pro-apoptotic and antiviral activity

July 28, 2017

Title

Novel analogs of alloferon: Synthesis, conformational studies, pro-apoptotic and antiviral activity

Author

Mariola Kuczer, Elżbieta Czarniewska, Anna Majewska, Maria Różanowska, Grzegorz Rosiński, Marek Lisowski

Year

2016

Journal

Bioorganic Chemistry

Abstract

In this study, we report the structure-activity relationships of novel derivatives of the insect peptide alloferon (H-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH). The peptide structure was modified by exchanging His at position 9 or 12 for natural or non-natural amino acids. Biological properties of these peptides were determined in antiviral in vitro test against Human Herpes Virus 1 McIntrie strain (HHV-1MC) using a Vero cell line. The peptides were also evaluated for the pro-apoptotic action in vivo on hemocytes of the Tenebrio molitor beetle. Additionally, the structural properties of alloferon analogs were examined by the circular dichroism in water and methanol. It was found that most of the evaluated peptides can reduce the HHV-1 titer in Vero cells. [Ala9]-alloferon exhibits the strongest antiviral activity among the analyzed compounds. However, no cytotoxic activity against Vero cell line was observed for all the studied peptides. In vivo assays with hemocytes of T. molitor showed that [Lys9]-, [Phg9]-, [Lys12]-, and [Phe12]-alloferon exhibit a twofold increase in caspases activity in comparison with the native peptide. The CD conformational studies indicate that the investigated peptides seem to prefer the unordered conformation.

Instrument

J-720

Keywords

Circular dichroism, Secondary structure, Biochemistry