Probe into a multi-protein prokaryotic organelle using thermal scanning assay reveals distinct properties of the core and the shell

July 30, 2020

Title

Probe into a multi-protein prokaryotic organelle using thermal scanning assay reveals distinct properties of the core and the shell

Author

Naimat K. Bari, Jagadish P.Hazra, Gaurav Kumar, Simerpreet Kaur, Sharmistha Sinha

Year

2020

Journal

Biochimica et Biophysica Acta (BBA) - General Subjects

Abstract

Bacterial microcompartment represents the only reported category of prokaryotic organelles that are capable of functioning as independent bioreactors. In this organelle, a biochemical pathway with all the enzyme machinery is encapsulated within an all protein shell. The shell proteins and the enzymes have distinct structural features. It is hypothesized that flat shell proteins align sideways to form extended sheets and, the globular enzymes fill up the central core of the organelle. Using differential scanning fluorimetry, we explored the structure and functional alteration of Pdu BMC, involving tertiary or quaternary structures. Our findings exhibit that these intact BMCs as a whole behave similar to a globular protein with a rich hydrophobic core, which is exposed upon thermal insult. The encapsulated enzymes itself have a strong hydrophobic core, which is in line with the hydrophobic-collapse model of protein folding. The shell proteins, on the other hand, do not have a strong hydrophobic core and show a significant portion of exposed hydrophobic patches. We show for the first time the thermal unfolding profile of the BMC domain proteins and the unique exposure of hydrophobic patches in them might be required for anchoring the enzymes leading to better packaging of the micro-compartments.

Instrument

J-1500

Keywords

Circular dichroism, Secondary structure, Biochemistry