The effect of replacing the ester bond with an amide bond and of overall stereochemistry on the activity of daptomycin

April 9, 2019

Title

The effect of replacing the ester bond with an amide bond and of overall stereochemistry on the activity of daptomycin

Author

Ryan Moreira, Ghufran Barnawi, David Beriashvili, Michael Palmer, Scott D. Taylor

Year

2019

Journal

Bioorganic & Medicinal Chemistry

Abstract

Daptomycin, a cyclic lipodepsipeptide antibiotic, has been used clinically since 2003 to treat serious infections caused by Gram-positive bacteria. Although 37 years have passed since daptomycin’s discovery, its mechanism of action is still debated. In this report, the effect of replacing the ester bond with an amide bond, and overall stereochemistry, on daptomycin’s biological activity was examined. Two peptideswere prepared in which the threonine4 residue in the active daptomycin analog, Dap-K6-E12-W13, was replaced with (2S,3R)-diaminobutyric acid ((2S,3R)-DABA) or its epimer (2S,3S-DABA) converting the ring-closing ester bond to an amide bond. Both of these peptides were found to be considerably less active than Dap-K6-E12-W13. These results, along with our previous studies on other daptomycin analogs, enabled us to conclude that the ester bond is crucial to daptomycin’s activity. ent-Dap-K6-E12-W13 was found to be at least 133-fold less active than Dap-K6-E12-W13, indicating that a chiral interaction with a chiral target is essential to daptomycin’s activity. Studies examining the binding of Dap-K6-E12-W13 and ent-Dap-K6-E12-W13 to model liposomes consisting of phosphatidylglycerol (PG) and phosphatidylcholine suggest that the stereochemistry of PG plays a crucial role in daptomycin-membrane interactions.

Instrument

J-715

Keywords

Circular dichroism, Stereochemistry, Biochemistry