
USING IR & CIRCULAR DICHROISM SPECTROSCOPY

Agenda

Proteins in Food

- Plant Based Protein Analysis
- Secondary Structure Estimation using CD

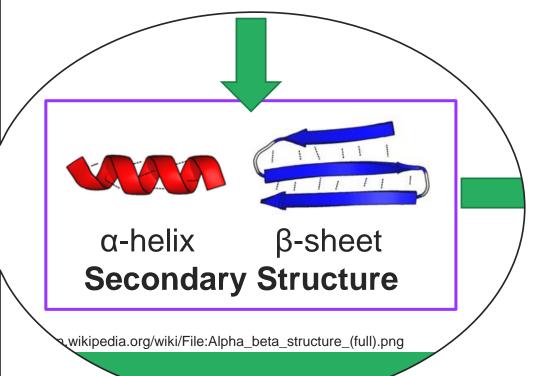
Secondary Structure Estimation using FTIR

≻CD vs. FTIR: What to Choose

Protein Analysis in Food

≻Important for:

- ➢Quality Control
- R&D (meat replacements)
- Protein Quantification
- Understanding protein structure is key for food development


Protein Analysis in Food

≻Important for:

- ➢Quality Control
- >R&D (meat replacements)
- Protein Quantification
- Understanding protein structure is key for food development

➢ Proteins in Food

Plant Based Protein Analysis

Secondary Structure Estimation using CD

Secondary Structure Estimation using FTIR

≻CD vs. FTIR: What to Choose

Plant Based Proteins

Crucial Field: Development of meat analogs from plant-based substances

Crucial to understand protein composition and secondary structure.

Improper balance of proteins could lead to strange texture or taste

Potentially difficult due to protein mixture

https://www.puris.com/

https://www.roquette.com/

Tools for Secondary Structure Estimation: CD and FTIR

A large amount of food studies focused on food and cooking utilize CD and/or FTIR to look at structural changes.

- Characterizing secondary structure is a good way to verify protein integrity
 - Is the amount of β-sheet changing over shelf life?

Ensure proper protein content for meat analogues

Does this batch have the correct β-sheet:α-helix ratio? The Effect of Maillard Conjugation of Deamidated Wheat Proteins with Low Molecular Weight Carbohydrates on the Secondary Structure of the Protein

Benjamin T. Wong, Li Day, Don McNaughton & Mary Ann Augustin 🖂

 Food Biophysics
 4, 1–12 (2009)
 Cite this article

 651
 Accesses
 23
 Citations
 Metrics

Food Chemistry Volume 377, 30 May 2022, 131749

 $\begin{array}{l} Characterization \ and \ functional \ properties \\ of \ Maillard \ reaction \ products \ of \ \beta- \\ lactoglobulin \ and \ polydextrose \end{array}$

Yingting Luo ª 쯔, Yaqi Tu ª 쯔, Fazheng Ren ª 쯔, Hao Zhang ^{a, b, c} 옷 쯔

Food Hydrocolloids Volume 46, April 2015, Pages 216-225

Characterising the secondary structure changes occurring in high density systems of BLG dissolved in aqueous pH 3 buffer

J.C. Ioannou ^a ペ 🖾, A.M. Donald ^a, R.H. Tromp ^b

Plant Based Proteins

Here we demonstrate secondary structure analysis of two commercial pea protein mixtures

>IR and CD spectroscopy are employed

We show Secondary Structures are easily quantified as solids (ATR) or liquids (CD, FTIR, Penta) for this complex mixture

In practice monitoring of SSE values informs you about batch-to-batch variation, or whether protein formulation is correct.

➢ Proteins in Food

Plant Based Protein Analysis

Secondary Structure Estimation using CD

- > Transmission Liquid
- Integrating Sphere Scattering Liquid

Secondary Structure Estimation using FTIR

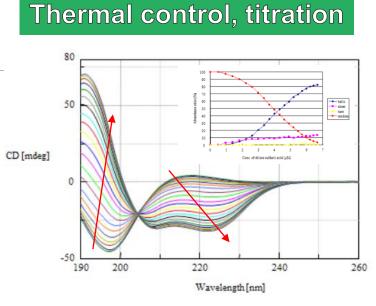
CD vs. FTIR: What to Choose

Instrument and Accessories

JASCO DRCD-575

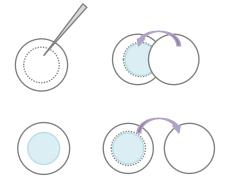

CD is a routinely used tool to estimate protein secondary structure

Some portions of these plant proteins are not soluble, so an integrating sphere can be useful.


CD for Structure Analysis of Proteins

Very easy to measure dynamic processes: Folding, Ligand Binding and Stability

J-1500 can use stopped flow to measure fast folding dynamics.



Capabilities to perform automatic titration

Easy to vary path length of cell allowing for flexibility in sample concentration.

2% protein with 10 µm cell Only 2 uL of solution!

Low concentrations using higher path length (1 cm)

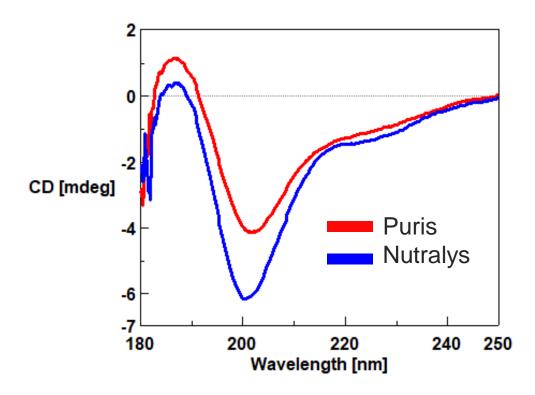
Sample Preparation

All scans used a 1 mm quartz cuvette and water solvent.

Puris and Nutralys samples were ground using a pestle and mortar

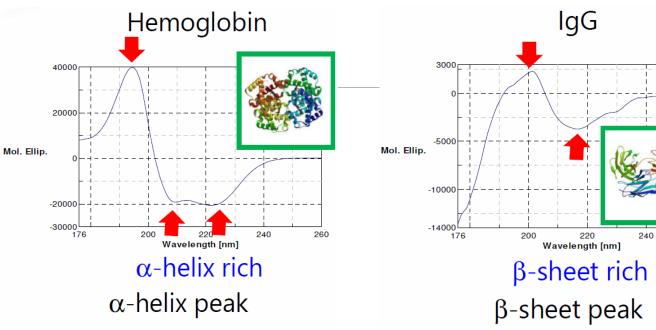
Transmission CD: Ground Puris and Nutralys samples were dissolved in water. Excess solid were centrifuged out and only the top layer was used.

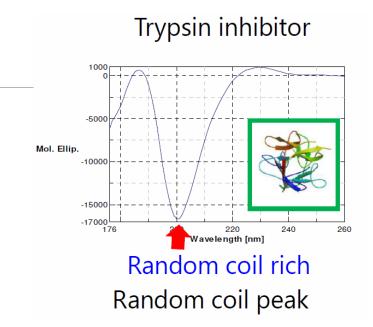
DRCD: after dissolution, protein <u>solutions</u> were directly measured via transmission into an integrating sphere.



0

https://www.labicons.net/equipments/centrifuges/microcentrifuges/doc/microcentrifuges-tubes-open.html "File:White-Mortar-and-Pestle.jpg." https://commons.wikimedia.org/w/index.php?title=File:White-Mortar-and-Pestle.jpg&oldid=451463203

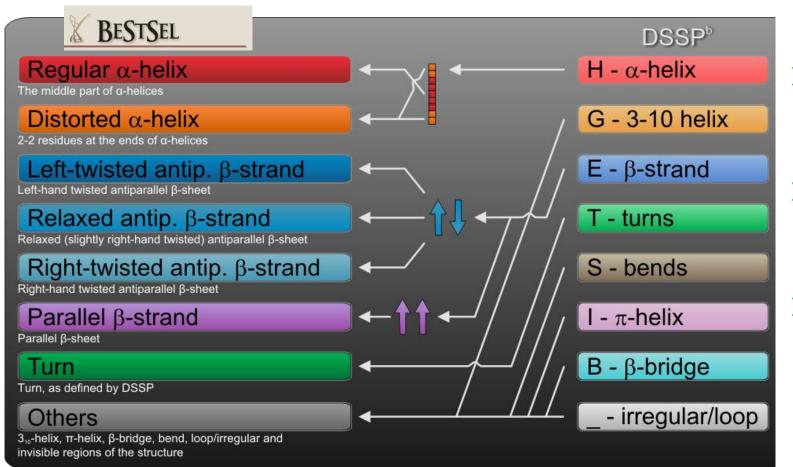

CD Spectra of Plant-based protein



- Negative peak at 201 nm for both samples
- ➢Negative signal at 230 nm.
- Both spectra are reminiscent of random coil

CD Spectra of Proteins

Wavelength / nm	sign
222	-
208-209	-
191-193	+

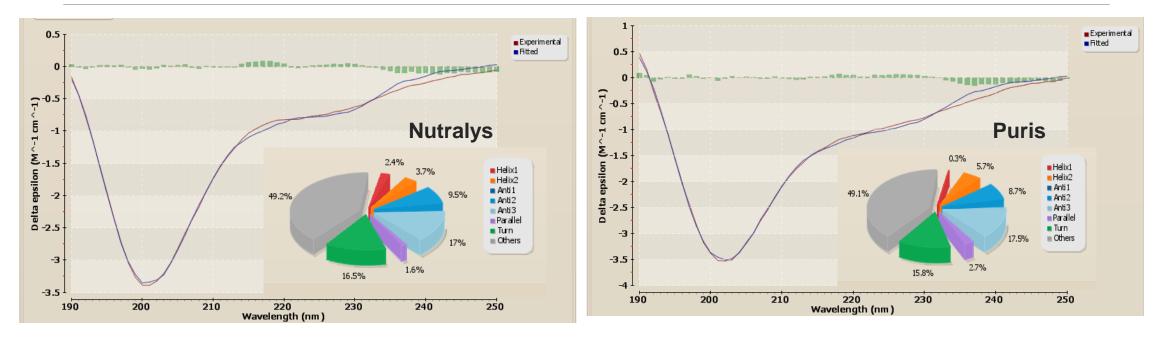

Wavelength / nm	sign
217	-
195-200	+

260

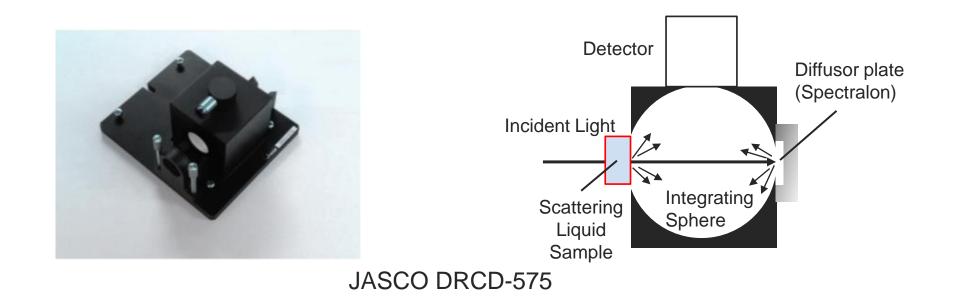
Wavelength / nm	sign
195-200	-

Secondary Structure Estimation - BeStSel

Structural assignments brought in from Dictionary of Secondary Structure of Proteins (DSSP)


CD spectra are fit to basis spectra for each of these structure components.

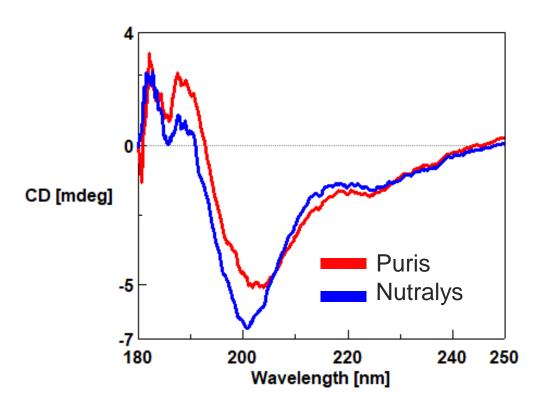
Magnitude of each component is used to find % secondary structure



https://bestsel.elte.hu/

SSE of CD Spectra of Plant-based protein

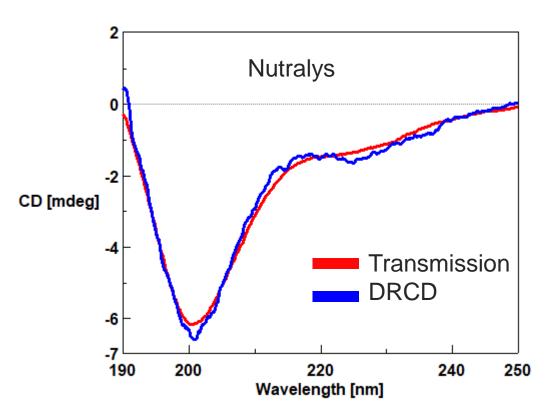
Integrating Sphere for Scattering Liquid



Samples with particulate can scatter light causing issues in absorption measurements.

Using an integrating sphere, the scattered light can be collected.

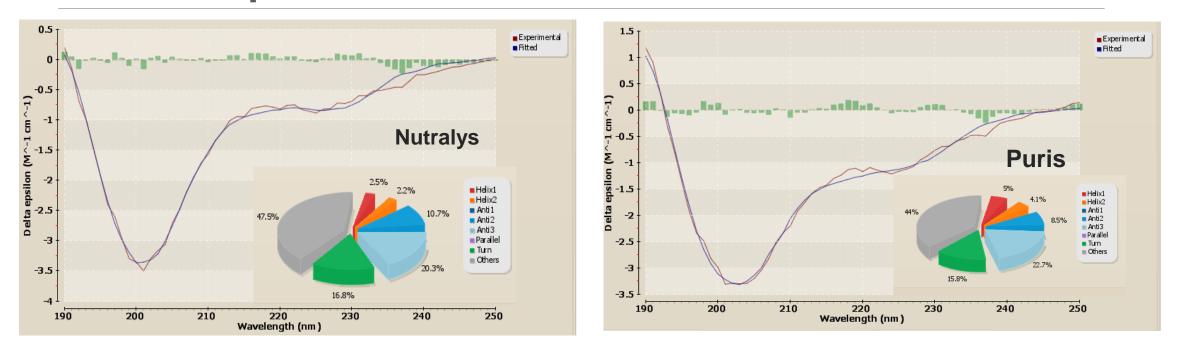
DRCD Spectra of Plant-based protein


Negative peak at 201 nm for both samples

Both spectra are reminiscent of random coil

Both spectra are like filtered samples

DRCD Spectra of Plant-based protein


Negative peak at 201 nm for both samples

Both spectra are reminiscent of random coil

>Both spectra are like filtered samples

SSE of DRCD Spectra of Plantbased protein

Sample	Helix	Sheet	Turn	Other	
Puris	9 %	31 %	16 %	44 %	
Nutralys	5 %	31 %	17 %	47 %	JASCO

Comparison of all CD methods

Sample	Helix	Sheet	Turn	Other
Puris (DRCD)	9 %	31 %	16 %	44 %
Puris (Transmission)	6 %	29 %	16 %	49 %
Nutralys (DRCD)	5 %	31 %	17 %	47 %
Nutralys (Transmission)	6 %	28 %	17 %	49 %

DRCD and standard CD transmission measurement match well for each sample.
 Puris DRCD has slightly more alpha helix than filtered sample.

> Puris has higher helix content than Nutralys.

Summary

Data shows similar SSE breakdown for Nutralys between DRCD of scattering solution and the centrifuged top layer measured with transmission.

BeStSel is a very effective tool to finding secondary structure of plant-based protein mixtures.

➤Use of the SSE breakdown:

Batch #	1	2	3	4	5	6
α-Helix	5 %	4 %	4 %	9 %	6 %	5 %
β-Sheet	31 %	32 %	32 %	28 %	31 %	33 %

Proteins in Food

Plant Based Protein Analysis

Secondary Structure Estimation using CD

Secondary Structure Estimation using FTIR

- >ATR solid
- Transmission Liquid
- Penta Liquid

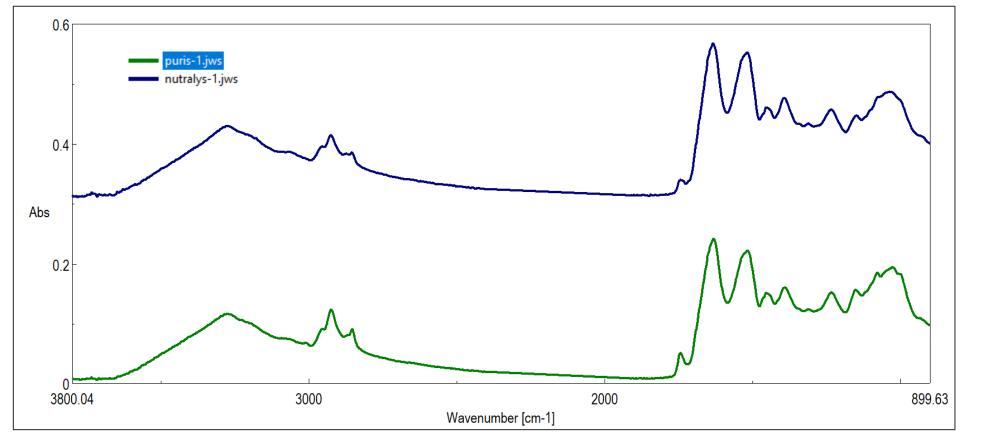
≻CD vs. FTIR: What to Choose

Sample Preparation

Puris and Nutralys samples were grinded using a pestle and mortar and dissolved 1 mg in a 1 ml buffer solution.

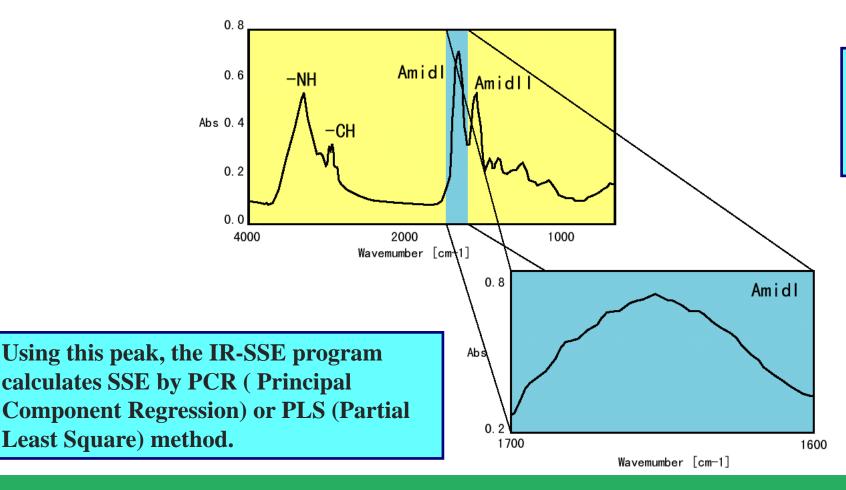
>15 μ l were fed in the transmission cell using a micropipette

Agate Mortar and Pestle



Instrument

- Minimal sample preparation
- Solid and liquid samples
- Acquisition of sample surface information



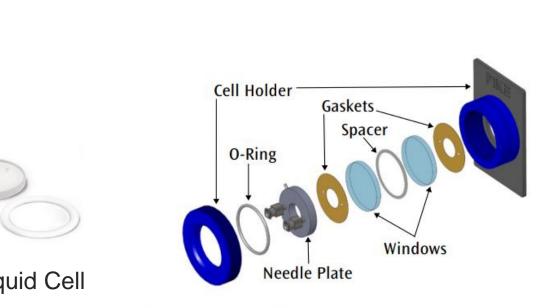
ATR-IR Spectra of Plant-based protein

Jaco

IR Spectrum of Proteins

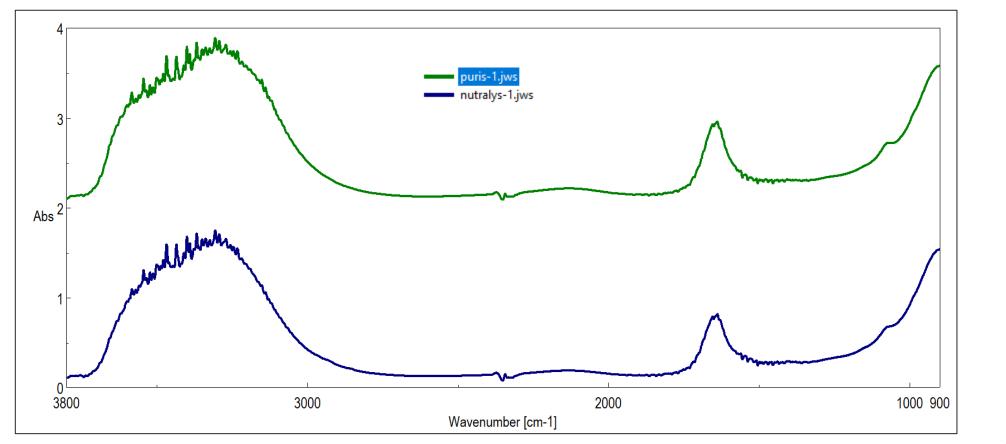
Amid I peak contains the
secondary structure
information (α-Helix, β-
Sheet etc.)

SSE of ATR-IR Spectra of Plantbased protein


Original Dat Corrected ID α-Heli β-Shee β-Turr Other Total Error		1.8 Abs 0 -0.2 1700			
Sample	α-Helix	β-Sheet	β– Turn	Other	
Puris	2 %	46 %	25 %	27 %	
Nutralys	4 %	44 %	25 %	27 %	

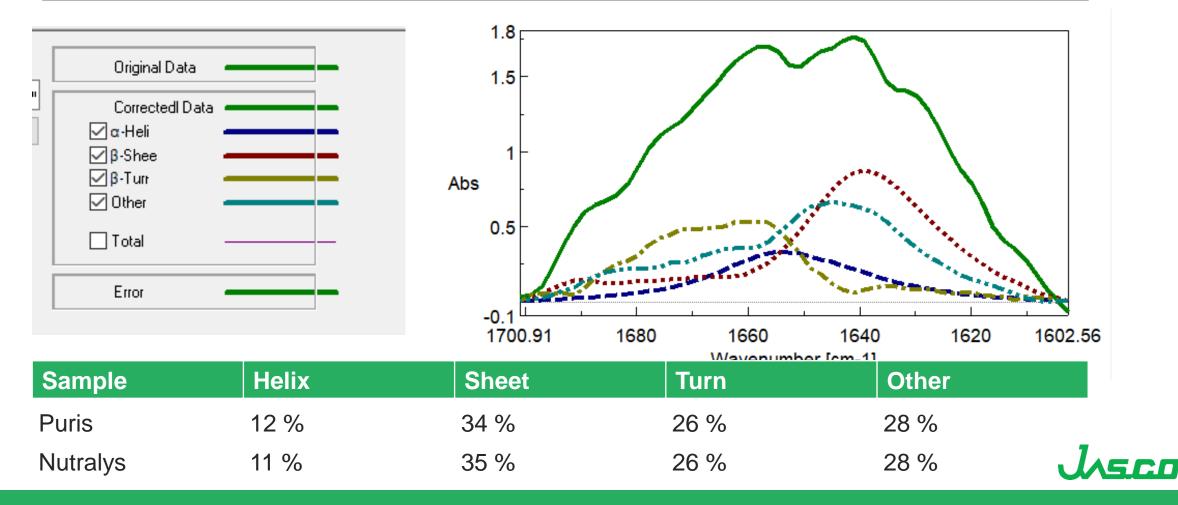
- SSE software predicts very similar secondary structure for each sample based on the IR spectra.
- Mainly β -sheet structure

Instrument and Accessories



Demountable liquid cell assembly layout.

JASCO FTIR – 4600



IR spectra using Transmission Cell

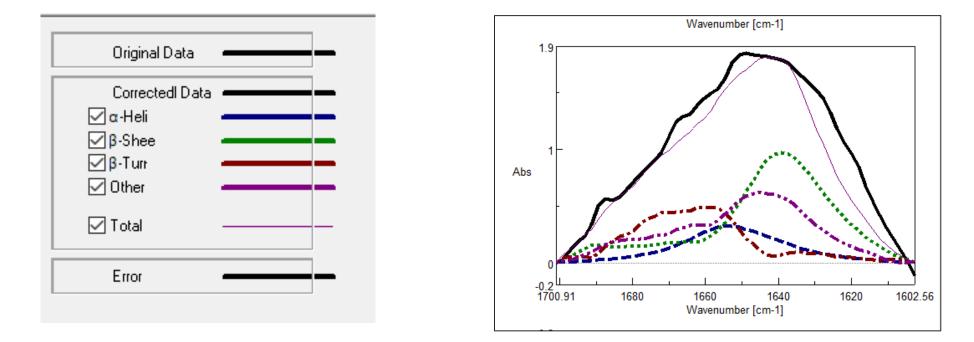
SSE Results using Transmission Cell

High sensitivity macro ATR for liquid sample

Configuration: FT/IR-4000/6000+ ATR PRO PENTA + Photo voltaic (PV) – MCT detector

Infrared light

14-reflections ATR (Ge)


- Higher sensitivity (1-order of magnitude) than single bounce germanium crystal ATR + TGS detector

- Good linearity of PV-MCT ensures high accuracy even in high-energy conditions.

- Enables to measure small volume sample (several $\mu L)$

SSE Results using PENTA ATR

Sample	Helix	Sheet	Turn	Other	
Puris	11 %	39 %	24 %	26 %	,
Nutralys	11 %	39 %	24 %	26 %	J

Summary

ATR and transmission data from based plant protein samples are enriched in β – sheets,

Transmission data showed lower values in β – sheets, but still is predominant

➢ Proteins in Food

Plant Based Protein Analysis

Secondary Structure Estimation using CD

Secondary Structure Estimation using FTIR

CD vs. FTIR: What to Choose

FTIR vs CD

Why Use IR, CD or both? *Concentration:*

CD	ATR single bounce (10%) or Transmission (50%)	
	ATR Pro Penta - 14 Bounces(0.1 %)	
05	50 Protein Concentration (%)	100

Solid vs Liquid:

>CD is more suited to liquids.

>FTIR can use ATR for solids, ATR Penta or transmission for liquids

Background Correction:

>CD solvents and buffers don't heavily impact signal.

FTIR has H₂O background at Amide I

Development Stage:

>CD offers more flexibility as a research instrument.

FTIR is generally faster, better for QC

IR vs CD, sampling recommendations etc.

Building Orthogonality into Biosimilar Testing

by <u>Richard L. Easton</u> Monday, April 13, 2020 4:49 pm

Primary and Higher-Order Structural Characterization Strategy for Biosimilarity Assessment

by <u>Fiona M. Greer</u> Wednesday, December 16, 2015 1:14 pm

View PDF

Protein higher order structure (secondary, tertiary and quaternary structure) determination in accordance with FDA, EMEA and ICH Guidance (Q6B, Q5E)

IR vs CD, sampling recommendations etc.

The case for orthogonal analysis

One Measurement: 1 point of failure.

- Are results truly different? Or was an error made?

Two Measurements: 2 points of failure

- 1 measurement has same result, other has different
 - Indicates error in one of experiments
- 2 differ from previous study = real change.

Conclusions

CD	ATR single bounce (10%) or Transmission (50%)			
	ATR Pro Penta - 14 Bounces(0.1 %)			
05	50 100 Protein Concentration (%)			
	FTIR	CD		
Sample Form	Liquid Solid (Crystal and amorphous)	Liquid Solid with diffuse reflectance		
Temperature Control	Yes	Yes		
High Throughput	No	Yes		
Mapping	Yes	No		
Secondary Structure Database Status	Under Study	Well-Known;Multiple options: JASCO multi, BeStSel		
Information	SSE and other	SSE, tertiary structure		
Price	Inexpensive Fairly expensive			

Thank You For Attending!

QUESTIONS?

Orthogonal Analysis Resources

Building Orthogonality into Biosimilar Testing <u>https://bioprocessintl.com/sponsored-content/building-orthogonality-into-biosimilarity-testing/</u>

Primary and Higher-Order Structural Characterization Strategy for Biosimilarity Assessment <u>https://bioprocessintl.com/manufacturing/biosimilars/primary-and-higher-order-structural-characterization-strategy-for-biosimilarity-assessment/</u>

Higher Order Structural Protein Analysis Protein higher order structure (secondary, tertiary and quaternary structure) determination in accordance with FDA, EMEA and ICH Guidance (Q6B, Q5E) https://www.intertek.com/pharmaceutical/biopharmaceuticals/high-order-structural-characterization/

Increasing regulatory focus on orthogonal analytical characterization for biosimilars <u>https://www.gabionline.net/sponsored-articles/Increasing-regulatory-focus-on-orthogonal-analytical-characterization-for-biosimilars</u>

