

Hierarchically Assembled Bowtie-Shaped Hybrid Metamaterials with a CHIRALITY CONTINUUM

Kumar, P., Vo, T., Cha, M. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

WEBINAR with **PRASHANT KUMAR, PhD**

Nature detects friend or foe using polarized light

ignon, Yakir Luc *et al.* Current blogy, 25, (23) 3074 – 3078 (2015).

Youtube : Deep Look

Shan Li et al. ACS Applied Materials & Interfaces 13 (15), 17380-17391 (2021

Uniqueness of bowties (Cd + Cystine)

1. One-pot Synthesis in water

2. Monodisperse

3. Molecule to Micron-sized particle

4. Scalable to gram of powder

Levels of hierarchy

Level 3 Stack of ribbons

Processing

Performance

Structure /

Property

SEM image

Level 1 Nanosheets 100 nm TEM image

5

What is level 1 made out of?

Understanding through Electron and X-ray diffraction

Level 0

Cryo-Selected Area Diffraction Pattern

0.8 **Cryo-Electron Diffraction** Synchrotron XRD Intensity (a.u.) 0.6 * 0.4 0.2 0 2 3 6 5 7 8 4 Frequency (nm⁻¹)

Material damages quickly under the electron beam at room temperature and converts to CdS nanoparticles

Cryo-SAED vs Synchrotron XRD

Unit cell of the structure at Level 0

Through synchrotron X-Ray diffraction and structure solution

Dr. Wenqian Xu

Unit cell of the structure at Level 0

Structure resolved from X-ray data

Colloidal Chemistry

Multiscale Synthesis and Characterization

Imaging and Spectroscopy

Atomic Structure Solution (XRD,TEM)

nm

Tomography (Cryo-TEM)

μm

RCP – Right circularly polarized light

LCP – Left circularly polarized light

Understanding the chiroptical response

Understanding the chiroptical response

Scattered Electric Field Distribution

 $|E|^2_{LCP}$ $|E|^2_{RCP}$ V^2/m^2 V^2/m^2 41 41 -30 -30 -20 -20 10 -4.1 ____10 ___4.1 V^2/m^2 V^2/m^2 41 41 -30 -30 -20 -20 ___10 __4.1 10 -4.1 ٨Y

 $\lambda = 1550 \text{ nm}$

LCP – Left circularly polarized light

Simulation

Collective rotational motion Motion is amplified for visualization

Very low eV vibrations

Lot needs to be understood here !

Experiment $\leftarrow \rightarrow$ Simulations

Monte-Carlo Modeling of Self-Assembly

Monte-Carlo Modeling of Self-Assembly

Scale bar is $1 \, \mu m$

[L-CST] in mM

[Cd²⁺] in mM

²²

[L-CST] = 4 mM

Chirality Continuum

Continuous change of twist from left-handed to no twist to right-handed at the micron level has not been observed from direct chirality transfer before

Combine multiple chemical parameters to generate a vast design space for bowtie morphology

Enantiomeric Excess (χ) = [L-CST] – [D-CST] [L-CST] + [D-CST]

CST : Cystine 24

Structure Property Relationships: Toward Inverse Design

Shape of object $\leftarrow \rightarrow$ CD spectra

- Length
- Width
- Thickness
- Twist Angle

Chirality Measures !

- P2 (+)
- P3 (-)

• P1 (-)

Chirality Measures

OPD – Osipov-Pickup-Dunmur chirality measure, a mathematical descriptor of chirality

Dr. Ji-young Kim

J. Am. Chem. Soc. 2019, 141, 30, 11739-11744

Osipov, M. A., Pickup, B. T. & Dunmur, D. A. A new twist to molecular chirality: intrinsic chirality indices. *Molec. Phys.* 84, 1193–1206 (1995). 26

Quantifying the morphology – Spans a large range

OPD -

Osipov-Pickup-Dunmur chirality measure, a mathematical descriptor of chirality

Scaling of different morphological parameters with OPD

Structure Property Relationships: Toward Inverse Design

What can we do with the inverse design?

30

What can we do with the inverse design? pulse generator LIDAR - Light Detection and Ranging, in-house setup using a 1550 nm laser (5 ns, 25 kHz) X & Y motorized galvo on-off type scanning mirror (servo) ±λ collimator sample linear 1550nm laser polarizer PI control program scattered light analyzer InGaAs detector beam collector . Dr. Minjeong Cha oscilloscope

Top view

Linear Polarizer

Quarter wave plate On/off

Beam Steerer

What can we do with the inverse design?

LIDAR - Light Detection and Ranging, in-house setup using a 1550 nm laser

Dr. Minjeong Cha

Friend or foe using bowties as coatings

Summary

- Designed a tunable bowtie metamaterial
- Created a tunable structure: 500 nm to 4 um size
- Developed structure property correlation
- "Slightly" better than the mantis shrimp

Kumar, P., Vo, T., Cha, M. *et al.* Photonically active bowtie nanoassemblies with chirality continuum. *Nature* **615**, 418–424 (2023).

Acknowledgements

Kotov group members

KOTOV

- Glotzer group members
- Undergrad Students Alex Simon, Daniel Katz

LÅB

KOTO

KOTO

DIA FEREN

BE DIA FEREN

AB

Kumar, P., Vo, T., Cha, M. et al. Photonically active bowtie nanoassemblies with chirality continuum. Nature 615, 418–424 (2023).

Thank you for attending our webinar. Visit us at **jasco**inc.com for additional resources.

