Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives

September 13, 2021

Title

Identification of four ene reductases and their preliminary exploration in the asymmetric synthesis of (R)-dihydrocarvone and (R)-profen derivatives

Author

Qinghua Shi

Year

2021

Journal

Enzyme and microbial technology

Abstract

The ene reductases (ERs) from the old yellow enzymes (OYEs) family have the ability to reduce activated alkenes to generate up to two stereocenters, therefore they have been received extensive attention as powerful biocatalysts. In this study, through gene mining, four ERs were identified from the genomes of Ensifer adhaerens, Pseudomonas fluorescens, and Pseudomonas veronil. The biocatalytic properties of these four ERs were identified, and their applications in the synthesis process of dihydrocarvone and profen derivatives were further evaluated. Among them, three ERs (EaER2, PvER1, and PvER2) belonging to the classic OYEs showed the best catalytic activity at 30 °C and pH 7.0 (100 mM potassium phosphate buffer) and the PfER2, which belongs to the thermophilic-like OYEs exhibited the best catalytic at 40 °C and pH 7.0 (100 mM potassium phosphate buffer). When exploring the influence of organic solvents on the catalytic efficiency, it was found that the four ERs were more sensitive to toluene and had tolerance to several other selected organic solvents. In addition, EaER2, PfER2, PvER1 and PvER2 showed excellent catalytic activity toward carvone, and the stereoselectivity of PvER2 toward carvone could reach up to 88.7 % de. EaER2 and PfER2 can catalyze the synthesis of a variety of profen derivatives with a stereoselectivity over 99 % ee. Moreover, through homology modeling and molecular docking, we preliminarily explained the mechanism of catalytic activity and stereoselectivity of the four ERs, which provided a solid base on the rational design of their stereo-preference in the future. The discovery of EaER2, PfER2, PvER1, and PvER2 provides four new enzyme sources for the study of the OYEs family and enriches the biocatalytic toolbox of ERs. Our exploration of the enzymatic properties of these four ERs will provide the sufficient data basis for future research and industrialization progress.

Instrument

J-1500, LC-4000(CD)

Keywords

Ensifer adhaerens, Pseudomonas fluorescens, and Pseudomonas veronil