Photocatalytic hydrogen evolution performance of metal ferrites /polypyrrole nanocomposites

September 21, 2022


Photocatalytic hydrogen evolution performance of metal ferrites /polypyrrole nanocomposites


Sanaz Chamani, Ebrahim Sadeghi, Naeimeh Sadat Peighambardoust, Fatmanur Doganay, Gizem Yanalak, Zafer Eroglu, Emre Aslan, Elnaz Asghari, Onder Metin, Imren Hatay Patir, Umut Aydemir, Maasoumeh Khatamian




International Journal of Hydrogen Energy


The combination of inorganic (e.g., ferrite nanoparticles) and organic (e.g., conducting polymers) materials in the fabrication of heterojunctions or composites is an attractive scheme in the field of photocatalysis. We took the advantage of this phenomenon by fabricating MFerrite (M = Co, Ni, and Zn) @polypyrrole ([email protected]) nanocomposites with a varying weight percentage of Ppy for the hydrogen production through photocatalytic water splitting under visible light irradiation. The structural, spectral, morphological, compositional, and optical features of the as-prepared nanocomposites were analyzed in full depth. The average crystallite sizes were estimated to be 30–40 nm from the XRD patterns which were further validated by TEM images from which a core-shell structure of the composites can be inferred. Likewise, the SEM images revealed spherical Ppy particles with a diameter in the range of 100–300 nm. From a photocatalytic viewpoint, [email protected] is endowed with some peculiar characteristics including but not limited to strong light-harvesting ability (ranging between 300 and 650 nm), narrow optical band gap (as low as 1.6 eV), and higher photoluminescence (PL) lifetime (6.41 ns) which justify why it stands out among all composites in terms of photocatalysis. Under 8 h illumination of simulated visible light and using triethanolamine (TEOA) as a hole scavenger and Eosin-Y (EY) as a dye sensitizer, the photocatalytic hydrogen evolution (HER) amount for [email protected] was found to be 10.44 mmol g−1, far greater than any other composite catalysts in this study. From the PL spectra, it can be pointed out that sensitization of CoFerrite with 30 wt % Ppy conduces to simultaneous deceleration of the electron-hole recombination process and acceleration of the transference of excitons within the system.




Hydrogen evolution, Ferrites, Photocatalysis, Polypyrrole Nanocomposite