Skip to content

JASCO JASCO

  • News
  • Events
  • E-Store
  • My Account
  • Contact Us
  • Worldwide
Search
Click to view menu
  • Products
    • Chromatography
      • HPLC
      • RHPLC
      • UHPLC
      • LC-MS
      • Preparative LC
      • Analytical SFC
      • Semi-Preparative SFC
      • Hybrid SFC
      • Fuel Analysis by SFC-FID
      • Preparative SFC
      • Supercritical Fluid Extraction
      • Chromatography Software
    • Molecular Spectroscopy
      • Circular Dichroism
      • High-Throughput CD
      • Vibrational CD
      • Circularly Polarized Luminescence (CPL)
      • Polarimeters
      • FTIR Spectrometers
      • FTIR Microscopy
      • FTIR Portable
      • Raman Microscopy
      • Palmtop Raman Spectrometer
      • Probe Raman
      • UV-Visible/NIR Spectrophotometers
      • UV-Visible/NIR Microscopy
      • Fluorescence Spectrophotometers
      • Film Thickness
      • Spectra Manager™ Suite
    • Refurbished
      • Refurbished HPLC Systems
      • HPLC Switching Valves
      • FTIR Accessories
  • Service
    • Service and Support Plans
    • Service Request Form
  • Applications
  • KnowledgeBase
  • Learning Center
    • Best Practice
      • Circular Dichroism Tips & Tricks for Biological Samples
      • CD Scale Calibration with ACS
      • Fluorescence Tips & Tricks
      • Raman Spectroscopy Tips & Tricks
    • Training Videos
      • ChromNAV
      • SF-NAV
      • Circular Dichroism
      • UV-Visible/NIR
      • Fluorescence
    • Training Seminars
      • Training Registration Form
    • Webinars
    • eBooks
    • Theory
      • Theory of Molecular Spectroscopy
      • Chromatography
  • About Us
    • President’s Message
    • Contact
    • History
    • Careers
  • News
  • Events
  • Worldwide
  • Shop
  • My Account
  • Contact Us

Home / Applications / High-Throughput Circular Dichroism for the Analysis of Biomedicines and pH Dependency

  • Industry

  • Technique

High-Throughput Circular Dichroism for the Analysis of Biomedicines and pH Dependency

By Heather Haffner

PDF IconDownload This Application

January 5, 2024

Introduction

High Throughput Circular Dichroism Measurement of Biomedicines

High throughput circular dichroism measurement can be important for the evaluation of large numbers of samples.  In this application note, we illustrate the use of the automated HTCD system to evaluate the pH dependency of the structure of human serum albumin (HSA).

Biomedicines offer a more natural approach to medicinal treatment. Biomedicines often include active ingredients derived from proteins, and the R&D into these materials is increasing rapidly. However, biomedicines are more sensitive to environmental changes, such as a change in temperature, pH, and salt concentration, compared with more traditional small-molecule pharmaceuticals. This environmental sensitivity may be a potential cause of biomedicines’ deactivation during manufacture and storage.

High-Throughput Circular Dichroism System

Circular dichroism (CD) measurements can provide information regarding changes in protein structure in small quantities of sample. Since protein structure and activity are closely related, CD measurements are now widely accepted in the quality control of protein, which includes biomedicines.

To meet the demand for increased sample throughput in the modern pharmaceutical laboratory, JASCO has developed a fully automated high throughput circular dichroism system. This system is composed of a J-1500 Circular Dichroism spectrophotometer with an automatic sample handling system for use with microplates and sample tubes. The high-throughput circular dichroism system enables the automation of sample pretreatment, measurement, and flow cell cleaning (to minimize carry-over).

 

Experimental

The pH of human serum albumin (reagent 1) was adjusted by diluted sulfuric acid or sodium hydroxide (reagent 2) using a 1:4 ratio. The initial concentration of the 30 mg of HSA used was 0.05 mg/mL and the final concentration after mixing was 0.01 mg/mL. The mixed reagent was injected into a 10 mm rectangular cell in the sample compartment of the J-1500. The entire sampling procedure, including the mixing of reagents, CD spectral measurement, and the washing and drying of cells were pre-programmed so that a fully automated and unattended measurement could be performed.

Measurement Conditions
 Data Acquisition Interval 0.5 nm
 Path Length 10 mm
 Spectral Bandwidth 1 nm
 Scan Speed 100 nm/min
 Accumulations 2
 Response Time 1 sec
 Reagent 1 Concentration (HSA) 0.5 mg/mL
 Reagent 1 Used 30 mg
 Mixed Reagent Concentration 0.01 mg/mL

Keywords

200-CD-0021, Biomedicines, quality control, automated measurement, high-throughput screening, human serum albumin, circular dichroism, J-1500, ASU-800, biochemistry, pharmaceutical

Results

Figure 1 shows the CD spectra of human serum albumin for 10 different pH values (1.3, 2.2, 3.1, 4.1, 5.4, 6.7, 7.5, 8.4, 9.3, 10.7). The plot illustrates that the CD decreases as the pH increases, indicating structural changes to HSA.

CD spectra of HSA for varying pHs. The arrow indicates the decrease in CD as the pH increases

Figure 2 shows these structural changes in more detail by plotting the CD values at 222 nm as a function of pH. 222 nm is a CD marker band for α-helices in proteins. By plotting this band, we can show the structural deviation of the protein’s α-helical content. Between pH 5 to 10, the α-helical structure is conserved. However, in acidic conditions (<5) and basic conditions (>10), the decreased CD intensity suggests a slight denaturation of the HSA protein.

The pH dependency of the CD intensity of the 222 nm band

Conclusion

By monitoring the pH dependency of human serum albumin using the J-1500 Circular Dichroism spectrometer and sample-handling ASU-800, numerous samples can be automatically measured to determine the structural integrity of the protein. This application note demonstrates that CD measurement is an effective tool for the quality control of biomedicines and that the JASCO J-1500 high-throughput CD system can assist pharmaceutical laboratories in the unattended screening of large numbers of samples.

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.

Featured Products:

  • Automated high-throughput screening system for use with the J-1500/1700.

    High-Throughput CD

  • Highest performance with a wide range of accessories for maximum flexibility to meet complex research demands.

    J-1500

  • UV/Visible/NIR measurements up to 2,500 nm for MCD and specialized applications.

    J-1700

About the Author

JASCO Application Note

High-Throughput Circular Dichroism for the Analysis of Biomedicines and pH Dependency

Introduction

High Throughput Circular Dichroism Measurement of Biomedicines

High throughput circular dichroism measurement can be important for the evaluation of large numbers of samples.  In this application note, we illustrate the use of the automated HTCD system to evaluate the pH dependency of the structure of human serum albumin (HSA).

Biomedicines offer a more natural approach to medicinal treatment. Biomedicines often include active ingredients derived from proteins, and the R&D into these materials is increasing rapidly. However, biomedicines are more sensitive to environmental changes, such as a change in temperature, pH, and salt concentration, compared with more traditional small-molecule pharmaceuticals. This environmental sensitivity may be a potential cause of biomedicines’ deactivation during manufacture and storage.

High-Throughput Circular Dichroism System

Circular dichroism (CD) measurements can provide information regarding changes in protein structure in small quantities of sample. Since protein structure and activity are closely related, CD measurements are now widely accepted in the quality control of protein, which includes biomedicines.

To meet the demand for increased sample throughput in the modern pharmaceutical laboratory, JASCO has developed a fully automated high throughput circular dichroism system. This system is composed of a J-1500 Circular Dichroism spectrophotometer with an automatic sample handling system for use with microplates and sample tubes. The high-throughput circular dichroism system enables the automation of sample pretreatment, measurement, and flow cell cleaning (to minimize carry-over).

 

Experimental

The pH of human serum albumin (reagent 1) was adjusted by diluted sulfuric acid or sodium hydroxide (reagent 2) using a 1:4 ratio. The initial concentration of the 30 mg of HSA used was 0.05 mg/mL and the final concentration after mixing was 0.01 mg/mL. The mixed reagent was injected into a 10 mm rectangular cell in the sample compartment of the J-1500. The entire sampling procedure, including the mixing of reagents, CD spectral measurement, and the washing and drying of cells were pre-programmed so that a fully automated and unattended measurement could be performed.

Measurement Conditions
 Data Acquisition Interval 0.5 nm
 Path Length 10 mm
 Spectral Bandwidth 1 nm
 Scan Speed 100 nm/min
 Accumulations 2
 Response Time 1 sec
 Reagent 1 Concentration (HSA) 0.5 mg/mL
 Reagent 1 Used 30 mg
 Mixed Reagent Concentration 0.01 mg/mL

Results

Figure 1 shows the CD spectra of human serum albumin for 10 different pH values (1.3, 2.2, 3.1, 4.1, 5.4, 6.7, 7.5, 8.4, 9.3, 10.7). The plot illustrates that the CD decreases as the pH increases, indicating structural changes to HSA.

CD spectra of HSA for varying pHs. The arrow indicates the decrease in CD as the pH increases

Figure 2 shows these structural changes in more detail by plotting the CD values at 222 nm as a function of pH. 222 nm is a CD marker band for α-helices in proteins. By plotting this band, we can show the structural deviation of the protein’s α-helical content. Between pH 5 to 10, the α-helical structure is conserved. However, in acidic conditions (<5) and basic conditions (>10), the decreased CD intensity suggests a slight denaturation of the HSA protein.

The pH dependency of the CD intensity of the 222 nm band

Conclusion

By monitoring the pH dependency of human serum albumin using the J-1500 Circular Dichroism spectrometer and sample-handling ASU-800, numerous samples can be automatically measured to determine the structural integrity of the protein. This application note demonstrates that CD measurement is an effective tool for the quality control of biomedicines and that the JASCO J-1500 high-throughput CD system can assist pharmaceutical laboratories in the unattended screening of large numbers of samples.

Keywords

200-CD-0021, Biomedicines, quality control, automated measurement, high-throughput screening, human serum albumin, circular dichroism, J-1500, ASU-800, biochemistry, pharmaceutical

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.
28600 Mary’s Court, Easton, MD 21601 USA • (800) 333-5272 • Fax: (410) 822-7526 • jascoinc.com/applications

Close

Designed in Tokyo. TRUSTED globally.

View our support plans

Connect with JASCO

  • Facebook
  • Twitter
  • LinkedIn
  • JASCO Sales
  • 800-333-5272

Receive the latest promotions and special offers

  • This field is for validation purposes and should be left unchanged.
  • Careers
  • Press Kit
  • JASCO Privacy Policy
  • Sitemap
  • Environmental Policy

© , JASCO. All Rights Reserved.