Skip to content

JASCO JASCO

  • News
  • Events
  • E-Store
  • My Account
  • Contact Us
  • Worldwide
Search
Click to view menu
MENUMENU
  • Products
    • Chromatography
      • HPLC
      • RHPLC
      • UHPLC
      • LC-MS
      • Preparative LC
      • Analytical SFC
      • Semi-Preparative SFC
      • Hybrid SFC
      • Fuel Analysis by SFC-FID
      • Preparative SFC
      • Supercritical Fluid Extraction
      • Chromatography Software
    • Molecular Spectroscopy
      • Circular Dichroism
      • High-Throughput CD
      • Vibrational CD
      • Circularly Polarized Luminescence (CPL)
      • Polarimeters
      • FTIR Spectrometers
      • FTIR Microscopy
      • FTIR Portable
      • Raman Microscopy
      • Palmtop Raman Spectrometer
      • Probe Raman
      • UV-Visible/NIR Spectrophotometers
      • UV-Visible/NIR Microscopy
      • Fluorescence Spectrophotometers
      • Film Thickness
      • Spectra Manager™ Suite
    • Refurbished
      • Refurbished HPLC Systems
      • HPLC Switching Valves
      • FTIR Accessories
  • Service
    • Service and Support Plans
    • Service Request Form
  • Applications
  • KnowledgeBase
  • Learning Center
    • Best Practice
      • Circular Dichroism Tips & Tricks for Biological Samples
      • CD Scale Calibration with ACS
      • Fluorescence Tips & Tricks
      • Raman Spectroscopy Tips & Tricks
    • Training Videos
      • ChromNAV
      • SF-NAV
      • Circular Dichroism
      • UV-Visible/NIR
      • Fluorescence
    • Training Seminars
      • Training Registration Form
    • Webinars
    • eBooks
    • Theory
      • Theory of Molecular Spectroscopy
      • Chromatography
  • About Us
    • President’s Message
    • Contact
    • History
    • Careers
  • News
  • Events
  • Worldwide
  • Shop
  • My Account
  • Contact Us

Home / Applications / High-Resolution CPL Spectrum Measurement of a Europium Complex [Eu(facam)3]

  • Industry

  • Technique

High-Resolution CPL Spectrum Measurement of a Europium Complex [Eu(facam)3]

By Heather Haffner

PDF IconDownload This Application

January 5, 2024

Introduction

When chiral compounds are excited with unpolarized light, the difference in emission intensities of left- and righthanded circularly polarized light can be measured. This phenomenon is called circularly polarized luminescence (CPL). While circular dichroism provides information about the ground state of chiral molecules, Circular polarized luminescence spectroscopy probes the excited states of chiral molecules.

In recent years, CPL-active molecules have been used for a wide range of technical applications such as security encoding, bioanalytical probes, and liquid crystal display devices.1 Chiral lanthanide complexes are one example of target molecules for CPL measurements. These complexes are known to exhibit sharp emission bands and require a narrow bandwidth during CPL measurements.

JASCO has recently developed a high sensitivity CPL spectrometer. By combining CPL with ECD, more structural information regarding chiral molecules can be obtained. To measure sharp CPL peaks at a high resolution, JASCO’s CPL-300 spectrometer uses two prism monochromators. Both the emission and excitation monochromators are equipped with continuously variable slit drives, which allow for an appropriate wavelength and bandwidth selection.

This application note demonstrates the high-resolution CPL spectrum measurement of europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] (Eu(facam)3) using a CPL-300. Eu(facam)3 is a common NMR shift reagent and has been used as a standard for CPL measurements.2

CPL-300 Circular Polarized Luminescence Spectrophotometer
CPL-300 Circular Polarized Luminescence Spectrophotometer

Experimental

5.5 mM Eu(facam)3 was prepared in DMSO.

Measurement conditions
 Excitation wavelength 373 nm
 Excitation slit width 4000 µm
 Emission bandwidth 3 nm
 Scan speed 200 nm/min
 Response time 4 sec
 Data acquisition interval 0.1 nm
 Accumulations 4
 Path length 10 mm

The absorption spectrum of Eu(facam)3 /DMSO solution was measured using a V-760 spectrometer and a 0.1 mm pathlength cylindrical cell and holder. The fluorescence spectra were obtained using a FP-8300 spectrofluorimeter and a 10×10 mm pathlength rectangular cell.

Keywords

180-CD-0028, Circularly Polarized Luminescence, CPL, lanthanides, luminescent material

Results

In order to find the excitation maximum needed to obtain the CPL and fluorescence emission spectrum of Eu(facam)3/ DMSO, the absorption spectrum was first obtained. Figure 1 depicts a maximum absorption peak (blue) at 309 nm. However, in order to optimize the excitation wavelength used in the CPL and fluorescence measurements, an excitation spectrum was subsequentially measured at the expected emission maximum peak’s wavelength at 613 nm. The excitation spectrum shows an apparent maximum at 373 nm (Figure 1, red). The excitation wavelength was set to 373 nm and the CPL and fluorescence measurements of Eu(facam)3/DMSO were measured and are shown in Figure 2.

Figure 1. The absorption (blue), excitation (red) and emission (green) spectra of Eu(facam)3/DMSO solution
Figure 2. The glum (top), CPL (middle), and fluorescence (bottom) spectra of Eu(facam)3 /DMSO solution.

All three spectra in Figure 2 show the 5D0 –> 7 F1 magnetic-dipole transition band at 595 nm. The additional emission band at 611 nm is due to the 5D0 –> 7 F2 electronic-dipole transition.3 The CPL spectrum shows strong signals which confirms the presence of the chiral facam ligands. The degree of CPL can be described by glum, the luminescent dissymmetry factor. This value quantifies the asymmetric environment surrounding the complexes’ metal ions. The larger the dissymmetry factor, the more polarized the emitted light will be. A glum of ±2 indicates the complete polarization of light while 0 correlates to unpolarized emitted light. Figure 2 (top) shows a glum value ca. -0.8 for the 595 nm transition band, indicating a chiral species is present.

Conclusion

The JASCO CPL-300 spectrometer can perform CPL measurements that produce high resolution spectra. The CPL, fluorescence, and glum spectra are all consistent with the literature.2,4,5

References

1. F Zinna and L Di Bari, Chirality, 2015, 27:1.
2. HG Brittain and FS Richardson, JACS, 1976, 98: 5858
3. JP Riehl, Chemical Reviews, 1986, 86: 1.
4. CK Luk and FS Richardson, JACS, 1975, 97: 6666.
5. T Harada, Y Nakano, M Fujiki, M Naito, T Kawai, and Y Hasegawa, Inorganic Chemistry, 2009, 48: 11242.

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.

Featured Products:

  • Circularly Polarized Luminescence

  • Digital Polarimeters

About the Author

JASCO Application Note

High-Resolution CPL Spectrum Measurement of a Europium Complex [Eu(facam)3]

Introduction

When chiral compounds are excited with unpolarized light, the difference in emission intensities of left- and righthanded circularly polarized light can be measured. This phenomenon is called circularly polarized luminescence (CPL). While circular dichroism provides information about the ground state of chiral molecules, Circular polarized luminescence spectroscopy probes the excited states of chiral molecules.

In recent years, CPL-active molecules have been used for a wide range of technical applications such as security encoding, bioanalytical probes, and liquid crystal display devices.1 Chiral lanthanide complexes are one example of target molecules for CPL measurements. These complexes are known to exhibit sharp emission bands and require a narrow bandwidth during CPL measurements.

JASCO has recently developed a high sensitivity CPL spectrometer. By combining CPL with ECD, more structural information regarding chiral molecules can be obtained. To measure sharp CPL peaks at a high resolution, JASCO’s CPL-300 spectrometer uses two prism monochromators. Both the emission and excitation monochromators are equipped with continuously variable slit drives, which allow for an appropriate wavelength and bandwidth selection.

This application note demonstrates the high-resolution CPL spectrum measurement of europium tris[3-(trifluoromethylhydroxymethylene)-(+)-camphorate] (Eu(facam)3) using a CPL-300. Eu(facam)3 is a common NMR shift reagent and has been used as a standard for CPL measurements.2

CPL-300 Circular Polarized Luminescence Spectrophotometer
CPL-300 Circular Polarized Luminescence Spectrophotometer

Experimental

5.5 mM Eu(facam)3 was prepared in DMSO.

Measurement conditions
 Excitation wavelength 373 nm
 Excitation slit width 4000 µm
 Emission bandwidth 3 nm
 Scan speed 200 nm/min
 Response time 4 sec
 Data acquisition interval 0.1 nm
 Accumulations 4
 Path length 10 mm

The absorption spectrum of Eu(facam)3 /DMSO solution was measured using a V-760 spectrometer and a 0.1 mm pathlength cylindrical cell and holder. The fluorescence spectra were obtained using a FP-8300 spectrofluorimeter and a 10×10 mm pathlength rectangular cell.

Results

In order to find the excitation maximum needed to obtain the CPL and fluorescence emission spectrum of Eu(facam)3/ DMSO, the absorption spectrum was first obtained. Figure 1 depicts a maximum absorption peak (blue) at 309 nm. However, in order to optimize the excitation wavelength used in the CPL and fluorescence measurements, an excitation spectrum was subsequentially measured at the expected emission maximum peak’s wavelength at 613 nm. The excitation spectrum shows an apparent maximum at 373 nm (Figure 1, red). The excitation wavelength was set to 373 nm and the CPL and fluorescence measurements of Eu(facam)3/DMSO were measured and are shown in Figure 2.

Figure 1. The absorption (blue), excitation (red) and emission (green) spectra of Eu(facam)3/DMSO solution
Figure 2. The glum (top), CPL (middle), and fluorescence (bottom) spectra of Eu(facam)3 /DMSO solution.

All three spectra in Figure 2 show the 5D0 –> 7 F1 magnetic-dipole transition band at 595 nm. The additional emission band at 611 nm is due to the 5D0 –> 7 F2 electronic-dipole transition.3 The CPL spectrum shows strong signals which confirms the presence of the chiral facam ligands. The degree of CPL can be described by glum, the luminescent dissymmetry factor. This value quantifies the asymmetric environment surrounding the complexes’ metal ions. The larger the dissymmetry factor, the more polarized the emitted light will be. A glum of ±2 indicates the complete polarization of light while 0 correlates to unpolarized emitted light. Figure 2 (top) shows a glum value ca. -0.8 for the 595 nm transition band, indicating a chiral species is present.

Conclusion

The JASCO CPL-300 spectrometer can perform CPL measurements that produce high resolution spectra. The CPL, fluorescence, and glum spectra are all consistent with the literature.2,4,5

Keywords

180-CD-0028, Circularly Polarized Luminescence, CPL, lanthanides, luminescent material

References

1. F Zinna and L Di Bari, Chirality, 2015, 27:1.
2. HG Brittain and FS Richardson, JACS, 1976, 98: 5858
3. JP Riehl, Chemical Reviews, 1986, 86: 1.
4. CK Luk and FS Richardson, JACS, 1975, 97: 6666.
5. T Harada, Y Nakano, M Fujiki, M Naito, T Kawai, and Y Hasegawa, Inorganic Chemistry, 2009, 48: 11242.

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.
28600 Mary’s Court, Easton, MD 21601 USA • (800) 333-5272 • Fax: (410) 822-7526 • jascoinc.com/applications

Close

Designed in Tokyo. TRUSTED globally.

View our support plans

Connect with JASCO

  • Facebook
  • Twitter
  • LinkedIn
  • JASCO Sales
  • 800-333-5272

Receive the latest promotions and special offers

  • This field is for validation purposes and should be left unchanged.
  • Careers
  • Press Kit
  • JASCO Privacy Policy
  • Sitemap
  • Environmental Policy

© , JASCO. All Rights Reserved.