Skip to content

JASCO JASCO

  • News
  • Events
  • E-Store
  • My Account
  • Contact Us
  • Worldwide
Search
Click to view menu
MENUMENU
  • Products
    • Chromatography
      • HPLC
      • RHPLC
      • UHPLC
      • LC-MS
      • Preparative LC
      • Analytical SFC
      • Semi-Preparative SFC
      • Hybrid SFC
      • Fuel Analysis by SFC-FID
      • Preparative SFC
      • Supercritical Fluid Extraction
      • Chromatography Software
    • Molecular Spectroscopy
      • Circular Dichroism
      • High-Throughput CD
      • Vibrational CD
      • Circularly Polarized Luminescence (CPL)
      • Polarimeters
      • FTIR Spectrometers
      • FTIR Microscopy
      • FTIR Portable
      • Raman Microscopy
      • Palmtop Raman Spectrometer
      • Probe Raman
      • UV-Visible/NIR Spectrophotometers
      • UV-Visible/NIR Microscopy
      • Fluorescence Spectrophotometers
      • Film Thickness
      • Spectra Manager™ Suite
    • Refurbished
      • Refurbished HPLC Systems
      • HPLC Switching Valves
      • FTIR Accessories
  • Service
    • Service and Support Plans
    • Service Request Form
  • Applications
  • KnowledgeBase
  • Learning Center
    • Best Practice
      • Circular Dichroism Tips & Tricks for Biological Samples
      • CD Scale Calibration with ACS
      • Fluorescence Tips & Tricks
      • Raman Spectroscopy Tips & Tricks
    • Training Videos
      • ChromNAV
      • SF-NAV
      • Circular Dichroism
      • UV-Visible/NIR
      • Fluorescence
    • Training Seminars
      • Training Registration Form
    • Webinars
    • eBooks
    • Theory
      • Theory of Molecular Spectroscopy
      • Chromatography
  • About Us
    • President’s Message
    • Contact
    • History
    • Careers
  • News
  • Events
  • Worldwide
  • Shop
  • My Account
  • Contact Us

Home / Applications / Nanometer scale characterization of a GaAsP semiconductor

  • Industry

  • Technique

Nanometer scale characterization of a GaAsP semiconductor

By Heather Haffner

PDF IconDownload This Application

August 23, 2022

Introduction

Jasco NFS 300
Jasco NFS 300

The NFS Series of scanning near-field optical microspectrometers have been optimized as a new solution for nanotechnology applications. Traditionally, characterization methods on the nanometer scale consist of topography observation using an electron or scanning probe microscope or elemental analysis using an x-ray microanalyzer. These methods deliver images with high spatial resolution but they cannot obtain chemical information from a sample surface. On the other hand, traditional FT-IR, photoluminescence, or Raman microspectroscopy instruments can provide chemical data for a sample, but the spatial resolution is determined by the diffraction limit of light, limited to the wavelength of the light used. Scanning near-field microspectrometers allow characterization at the extreme nano level range exceeding the diffraction limit of light. Introducing light into a fiber probe with an aperture of a hundred to several hundred nm produces near-field light of the same size as the probe aperture. Bringing the sample close to the probe aperture (within 100 nm) allows spectroscopic observations with a spatial resolution of several hundred nm as a result of the interaction of the near-field light with the sample surface.

Sample characterization with submicron spatial resolution is critical because impurities on the nanometer scale can have a major impact on the electrical properties of semiconductors. For instance, the compositional ratio of GaAs and GaP in a GaAsP material can be estimated from the emission spectra of the sample surface. Conventional nearfield microscopes that do not provide spectroscopic data cannot produce this compositional information. With the NFS series, however, observation of minute peak shifts from the emission spectra can easily be performed for multiple sample sites. Figure 1 is the topographical image of a sample surface for a 6 x 6 µm area. Figure 2 illustrates the peak shift distribution of the GaAsP substrate, the green portions denoting a long wavelength shift, indicating that the GaP concentration is slightly higher than the surrounding area.

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.

Featured Products:

  • SFC-4000 Preparative SFC system for preparative scale purifications.

    Preparative SFC System

  • LC-4000 Series Preparative HPLC

  • SFC-4000 Semi-Preparative SFC for semi-preparative scale purifications.

    Semi-Preparative SFC System

About the Author

JASCO Application Note

Nanometer scale characterization of a GaAsP semiconductor

Introduction

Jasco NFS 300
Jasco NFS 300

The NFS Series of scanning near-field optical microspectrometers have been optimized as a new solution for nanotechnology applications. Traditionally, characterization methods on the nanometer scale consist of topography observation using an electron or scanning probe microscope or elemental analysis using an x-ray microanalyzer. These methods deliver images with high spatial resolution but they cannot obtain chemical information from a sample surface. On the other hand, traditional FT-IR, photoluminescence, or Raman microspectroscopy instruments can provide chemical data for a sample, but the spatial resolution is determined by the diffraction limit of light, limited to the wavelength of the light used. Scanning near-field microspectrometers allow characterization at the extreme nano level range exceeding the diffraction limit of light. Introducing light into a fiber probe with an aperture of a hundred to several hundred nm produces near-field light of the same size as the probe aperture. Bringing the sample close to the probe aperture (within 100 nm) allows spectroscopic observations with a spatial resolution of several hundred nm as a result of the interaction of the near-field light with the sample surface.

Sample characterization with submicron spatial resolution is critical because impurities on the nanometer scale can have a major impact on the electrical properties of semiconductors. For instance, the compositional ratio of GaAs and GaP in a GaAsP material can be estimated from the emission spectra of the sample surface. Conventional nearfield microscopes that do not provide spectroscopic data cannot produce this compositional information. With the NFS series, however, observation of minute peak shifts from the emission spectra can easily be performed for multiple sample sites. Figure 1 is the topographical image of a sample surface for a 6 x 6 µm area. Figure 2 illustrates the peak shift distribution of the GaAsP substrate, the green portions denoting a long wavelength shift, indicating that the GaP concentration is slightly higher than the surrounding area.

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.
28600 Mary’s Court, Easton, MD 21601 USA • (800) 333-5272 • Fax: (410) 822-7526 • jascoinc.com/applications

Close

Designed in Tokyo. TRUSTED globally.

View our support plans

Connect with JASCO

  • Facebook
  • Twitter
  • LinkedIn
  • JASCO Sales
  • 800-333-5272

Receive the latest promotions and special offers

  • This field is for validation purposes and should be left unchanged.
  • Careers
  • Press Kit
  • JASCO Privacy Policy
  • Sitemap
  • Environmental Policy

© , JASCO. All Rights Reserved.