Skip to content

JASCO JASCO

  • News
  • Events
  • E-Store
  • My Account
  • Contact Us
  • Worldwide
Search
Click to view menu
MENUMENU
  • Products
    • Chromatography
      • HPLC
      • RHPLC
      • UHPLC
      • LC-MS
      • Preparative LC
      • Analytical SFC
      • Semi-Preparative SFC
      • Hybrid SFC
      • Fuel Analysis by SFC-FID
      • Preparative SFC
      • Supercritical Fluid Extraction
      • Chromatography Software
    • Molecular Spectroscopy
      • Circular Dichroism
      • High-Throughput CD
      • Vibrational CD
      • Circularly Polarized Luminescence (CPL)
      • Polarimeters
      • FTIR Spectrometers
      • FTIR Microscopy
      • FTIR Portable
      • Raman Microscopy
      • Palmtop Raman Spectrometer
      • Probe Raman
      • UV-Visible/NIR Spectrophotometers
      • UV-Visible/NIR Microscopy
      • Fluorescence Spectrophotometers
      • Film Thickness
      • Spectra Manager™ Suite
    • Refurbished
      • Refurbished HPLC Systems
      • HPLC Switching Valves
      • FTIR Accessories
  • Service
    • Service and Support Plans
    • Service Request Form
  • Applications
  • KnowledgeBase
  • Learning Center
    • Best Practice
      • Circular Dichroism Tips & Tricks for Biological Samples
      • CD Scale Calibration with ACS
      • Fluorescence Tips & Tricks
      • Raman Spectroscopy Tips & Tricks
    • Training Videos
      • ChromNAV
      • SF-NAV
      • Circular Dichroism
      • UV-Visible/NIR
      • Fluorescence
    • Training Seminars
      • Training Registration Form
    • Webinars
    • eBooks
    • Theory
      • Theory of Molecular Spectroscopy
      • Chromatography
  • About Us
    • President’s Message
    • Contact
    • History
    • Careers
  • News
  • Events
  • Worldwide
  • Shop
  • My Account
  • Contact Us

Home / Applications / Supercritical Fluid Extraction of Residual Pesticides in Spinach

  • Industry

  • Technique

Supercritical Fluid Extraction of Residual Pesticides in Spinach

By Kenichi Akao

PDF IconDownload This Application

February 27, 2024

Introduction

Supercritical Fluid Extraction of Residual Pesticides

The extraction of residual pesticides in foods has been typically been performed by solvent extraction . This method, however, takes approx. 4 – 5 hours per extraction, and requires large quantities of organic solvent. In recent years, supercritical fluid extraction (SFE) using supercritical carbon dioxide has attracted much attention as an alternative method to the solvent extraction method.

JASCO has developed a fully automated residual pesticide extraction system, and applied this system to the analysis of a spinach sample. Extracted components were analyzed by GC-MS/MS.

Experimental

The fully automated residual pesticide extraction system was used for this application. A schematic of the system is shown in Figure 1.

Figure 1. Schematic of a fully automated system for supercritical fluid extraction of residual pesticides
System configuration: 1 = carbon dioxide cylinder, 2 = liquefied carbon dioxide delivery pump, 3 = modifier, 4 = modifier delivery pump, 5 = preheating coil, 6 = solvent for trap elution, 7 = rinse solution for trap column, 8 = solvent delivery pump, 9 = switching valve for flow line, 10 = oven, 11 = extraction vessels, 12 = 6-vessel changer, 13 = release valve, 14 = automatic back pressure regulator, 15 = trap column, 16 = 3-way valve, 17 = 6-way flow line switching valve, 18 = collection tubes, 19 = system controller. Supercritical CO2 delivered by pump 2 passes through one of vessels 11 in which the sample is loaded and then pesticides are extracted. The extracted pesticides are concentrated by a trap column, is eluted by acetonitrile (2 mL) delivered by pump 8, and is collected in one of collection tubes 18. This system is automatically controlled by 19, system controller.

Supercritical fluid extraction conditions:

Supercritical Fluid Extraction
Supercritical Fluid Extraction System

extraction tube : 10 mL (10 mm x 127 mm), supercritical fluid : CO2, back pressure = 15 MPa, extraction time : 30 min, flow rate : 2mL/min, trap column : ODS (4.6 mm x 50 mm, 30 µm), solvent for trap elution : acetonitrile 2 mL (flow rate : 2mL/min).

As an analytical sample, spinach was selected. Sixty-eight kinds of pesticides were added to the spinach to be a concentration of 0.1 ppm for each pesticide except captan, 1 ppm and acetamiprid, 0.5 ppm. Two grams of the spinach and 2 g of Hydromatrix (a dehydrating agent) were loaded in each extraction vessel; SFE was applied at an extraction pressure of 15 MPa, at an extraction temperature of 40°C, for an extraction time of 30 min; the extracted components were adsorbed on a trap column; the trapped components were eluted with acetonitrile; the acetonitrile solution was evaporated to dryness with nitrogen gas; and the residue was dissolved in 3 mL of acetone containing 0.05% of PEG200 and PEG400. A portion of this solution was injected onto the GC.

Keywords

residual pesticides, , SFE, supercritical fluid extractions

Results

Chromatograms of the standard mixture (upper), the sample added with the standard (middle), and the blank (lower) are shown in Figure 2.

Figure 2. GC chromatograms of wheat flour sample
Upper : standard mixture (68 components)
Middle : sample added with standard mixture
Lower : blank Measurement conditions

Standard mixture solution contains 68 components as below:
1: Acephate, 2: Acetamiprid, 3: Bendiocarb, 4: Bitertanol, 5: Butylate, 6: Captan, 7: Carbaryl 8: Chinomethionat, 9: Chlorfenvinphos, 10: Chlorpyriphos, 11: Cyfluthrin, 12: Cypermethrin, 13: Deltamethrin, 14: Diazinon, 15: Dichlofluanid, 16: Dichlorvos, 17: Diethofencarb, 18: Dimethylvinphos, 19: EPN, 20: Esprocarb, 21: Ethiofencarb, 22: Ethoprophos, 23: Fenarimol, 24: Fenitrothin, 25: Fenobucarb, 26: Fensulfothion, 27: Fenvalerate, 28: Flucythrinate, 29: Flusilazole, 30: Flutolanil, 31: Fluvalinate, 32: Imibenconazole, 33: Iprodione, 34: Isofenphos , 35: Isofenphos P=O, 36: Isoprocarb, 37: Lenacil, 38: Malathion, 39: Mefenacet, 40: Mepronil, 41: Methamidophos, 42: Metolaclior, 43: p,p’-DDE, 44: Paclobutrazol, 45: Pencycuron, 46: Pendimethalin, 47: Permethalin, 48: Phenthoate, 49: Phosalone, 50: Pirimifos-methyl, 51: p,p’-DDD, 52: Pretilachlor, 53: Propiconazole, 54: Pyraclofos, 55: Pyridaben, 56: Pyridaphenthion, 57: Pyrimidifen, 58: Quinalphos, 59: Tefluthrin, 60: Terbucarb, 61: Terbufos, 62: Thenylchlor, 63: Tolclofos-methyl, 64: Triadimenol, 65: a-BHC, 66: ß-BHC, 67: ?-BHC, 68: d-BHC.

As shown in Table 1, among the 68 pesticides, 47 exhibited more than 70% recovery, and 61 more than 50% recovery. The recovery of acetamiprid and butylate was 20% and 45%, respectively. Acephate, captan, dichlofluanid, and methamidophos exhibited less than 10% recovery; their high hydrophilicity and adsorption on the dehydrating agent seemed to be responsible for a poor recovery in SFE.

No.PesticideRecovery (%)No.PesticideRecovery (%)
1Acephate9.235Isofenphos P=O98.0
2Acetamiprid19.836Isoprocarb89.1
3Bendiocarb113.037Lenacil79.9
4Bitertanol64.038Malathion91.8
5Butylate45.139Mefenacet87.4
6Captan3.840Mepronil75.7
7Carbaryl130.541Methamidophos4.7
8Chinomethionat97.042Metolachlor97.7
9Chlorfenvinphos76.143p,p'-DDE71.7
10Chlorpyriphos84.044Paclobutrazol111.6
11Cyfluthrin59.145Pencycuron59.9
12Cypermethrin86.746Pendimethalin95.6
13Deltamethrin57.847Permethalin57.3
14Diazinon78.648Phenthoate77.0
15Dichlofluanid2.949Phosalone73.5
16Dichlorvos60.150Pirimifos-methyl90.2
17Diethofencarb101.551p,p'-DDD81.8
18Dimethylvinphos90.952Pretilachlor88.9
19EPN75.053Propiconazole76.1
20Esprocarb79.154Pyraclofos76.6
21Ethiofencarb44.155Pyridaben68.6
22Ethoprophos95.256Pyridaphenthion92.4
23Fenarimol73.057Pyrimidifen77.0
24Fenitrothion107.858Quinalphos82.9
25Fenobucarb89.059Tefluthrin64.5
26Fensulfothion101.660Terbucarb89.3
27Fenvalerate64.561Terbufos52.2
28Flucythrinate56.962Thenylchlor96.4
29Flusilazole86.562Tolclofos-methyl83.5
30Flutolanil92.164Triadimenol93.4
31Fluvalinate50.765a-BHC92.0
32Imibenconazole63.266ß-BHC92.7
33Iprodione105.467Y-BHC88.1
34Isofenphos57.168d-BHC106.4
This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.

Featured Products:

  • SFC-4000 Analytical SFC for routine separation to method development.

    Analytical SFC System

  • ChromNAV 2.0

  • SFC-4000 Preparative SFC system for preparative scale purifications.

    Preparative SFC System

About the Author

Mr. Akao, is the Applications Group Manager at JASCO Corporation, with many years at the company working on applications in electronic and vibrational spectroscopy, and is an expert in IR and Raman spectroscopy.

JASCO Application Note

Supercritical Fluid Extraction of Residual Pesticides in Spinach

Introduction

Supercritical Fluid Extraction of Residual Pesticides

The extraction of residual pesticides in foods has been typically been performed by solvent extraction . This method, however, takes approx. 4 – 5 hours per extraction, and requires large quantities of organic solvent. In recent years, supercritical fluid extraction (SFE) using supercritical carbon dioxide has attracted much attention as an alternative method to the solvent extraction method.

JASCO has developed a fully automated residual pesticide extraction system, and applied this system to the analysis of a spinach sample. Extracted components were analyzed by GC-MS/MS.

Experimental

The fully automated residual pesticide extraction system was used for this application. A schematic of the system is shown in Figure 1.

Figure 1. Schematic of a fully automated system for supercritical fluid extraction of residual pesticides
System configuration: 1 = carbon dioxide cylinder, 2 = liquefied carbon dioxide delivery pump, 3 = modifier, 4 = modifier delivery pump, 5 = preheating coil, 6 = solvent for trap elution, 7 = rinse solution for trap column, 8 = solvent delivery pump, 9 = switching valve for flow line, 10 = oven, 11 = extraction vessels, 12 = 6-vessel changer, 13 = release valve, 14 = automatic back pressure regulator, 15 = trap column, 16 = 3-way valve, 17 = 6-way flow line switching valve, 18 = collection tubes, 19 = system controller. Supercritical CO2 delivered by pump 2 passes through one of vessels 11 in which the sample is loaded and then pesticides are extracted. The extracted pesticides are concentrated by a trap column, is eluted by acetonitrile (2 mL) delivered by pump 8, and is collected in one of collection tubes 18. This system is automatically controlled by 19, system controller.

Supercritical fluid extraction conditions:

Supercritical Fluid Extraction
Supercritical Fluid Extraction System

extraction tube : 10 mL (10 mm x 127 mm), supercritical fluid : CO2, back pressure = 15 MPa, extraction time : 30 min, flow rate : 2mL/min, trap column : ODS (4.6 mm x 50 mm, 30 µm), solvent for trap elution : acetonitrile 2 mL (flow rate : 2mL/min).

As an analytical sample, spinach was selected. Sixty-eight kinds of pesticides were added to the spinach to be a concentration of 0.1 ppm for each pesticide except captan, 1 ppm and acetamiprid, 0.5 ppm. Two grams of the spinach and 2 g of Hydromatrix (a dehydrating agent) were loaded in each extraction vessel; SFE was applied at an extraction pressure of 15 MPa, at an extraction temperature of 40°C, for an extraction time of 30 min; the extracted components were adsorbed on a trap column; the trapped components were eluted with acetonitrile; the acetonitrile solution was evaporated to dryness with nitrogen gas; and the residue was dissolved in 3 mL of acetone containing 0.05% of PEG200 and PEG400. A portion of this solution was injected onto the GC.

Results

Chromatograms of the standard mixture (upper), the sample added with the standard (middle), and the blank (lower) are shown in Figure 2.

Figure 2. GC chromatograms of wheat flour sample
Upper : standard mixture (68 components)
Middle : sample added with standard mixture
Lower : blank Measurement conditions

Standard mixture solution contains 68 components as below:
1: Acephate, 2: Acetamiprid, 3: Bendiocarb, 4: Bitertanol, 5: Butylate, 6: Captan, 7: Carbaryl 8: Chinomethionat, 9: Chlorfenvinphos, 10: Chlorpyriphos, 11: Cyfluthrin, 12: Cypermethrin, 13: Deltamethrin, 14: Diazinon, 15: Dichlofluanid, 16: Dichlorvos, 17: Diethofencarb, 18: Dimethylvinphos, 19: EPN, 20: Esprocarb, 21: Ethiofencarb, 22: Ethoprophos, 23: Fenarimol, 24: Fenitrothin, 25: Fenobucarb, 26: Fensulfothion, 27: Fenvalerate, 28: Flucythrinate, 29: Flusilazole, 30: Flutolanil, 31: Fluvalinate, 32: Imibenconazole, 33: Iprodione, 34: Isofenphos , 35: Isofenphos P=O, 36: Isoprocarb, 37: Lenacil, 38: Malathion, 39: Mefenacet, 40: Mepronil, 41: Methamidophos, 42: Metolaclior, 43: p,p’-DDE, 44: Paclobutrazol, 45: Pencycuron, 46: Pendimethalin, 47: Permethalin, 48: Phenthoate, 49: Phosalone, 50: Pirimifos-methyl, 51: p,p’-DDD, 52: Pretilachlor, 53: Propiconazole, 54: Pyraclofos, 55: Pyridaben, 56: Pyridaphenthion, 57: Pyrimidifen, 58: Quinalphos, 59: Tefluthrin, 60: Terbucarb, 61: Terbufos, 62: Thenylchlor, 63: Tolclofos-methyl, 64: Triadimenol, 65: a-BHC, 66: ß-BHC, 67: ?-BHC, 68: d-BHC.

As shown in Table 1, among the 68 pesticides, 47 exhibited more than 70% recovery, and 61 more than 50% recovery. The recovery of acetamiprid and butylate was 20% and 45%, respectively. Acephate, captan, dichlofluanid, and methamidophos exhibited less than 10% recovery; their high hydrophilicity and adsorption on the dehydrating agent seemed to be responsible for a poor recovery in SFE.

No.PesticideRecovery (%)No.PesticideRecovery (%)
1Acephate9.235Isofenphos P=O98.0
2Acetamiprid19.836Isoprocarb89.1
3Bendiocarb113.037Lenacil79.9
4Bitertanol64.038Malathion91.8
5Butylate45.139Mefenacet87.4
6Captan3.840Mepronil75.7
7Carbaryl130.541Methamidophos4.7
8Chinomethionat97.042Metolachlor97.7
9Chlorfenvinphos76.143p,p'-DDE71.7
10Chlorpyriphos84.044Paclobutrazol111.6
11Cyfluthrin59.145Pencycuron59.9
12Cypermethrin86.746Pendimethalin95.6
13Deltamethrin57.847Permethalin57.3
14Diazinon78.648Phenthoate77.0
15Dichlofluanid2.949Phosalone73.5
16Dichlorvos60.150Pirimifos-methyl90.2
17Diethofencarb101.551p,p'-DDD81.8
18Dimethylvinphos90.952Pretilachlor88.9
19EPN75.053Propiconazole76.1
20Esprocarb79.154Pyraclofos76.6
21Ethiofencarb44.155Pyridaben68.6
22Ethoprophos95.256Pyridaphenthion92.4
23Fenarimol73.057Pyrimidifen77.0
24Fenitrothion107.858Quinalphos82.9
25Fenobucarb89.059Tefluthrin64.5
26Fensulfothion101.660Terbucarb89.3
27Fenvalerate64.561Terbufos52.2
28Flucythrinate56.962Thenylchlor96.4
29Flusilazole86.562Tolclofos-methyl83.5
30Flutolanil92.164Triadimenol93.4
31Fluvalinate50.765a-BHC92.0
32Imibenconazole63.266ß-BHC92.7
33Iprodione105.467Y-BHC88.1
34Isofenphos57.168d-BHC106.4

Keywords

residual pesticides, , SFE, supercritical fluid extractions

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.
28600 Mary’s Court, Easton, MD 21601 USA • (800) 333-5272 • Fax: (410) 822-7526 • jascoinc.com/applications

Close

Designed in Tokyo. TRUSTED globally.

View our support plans

Connect with JASCO

  • Facebook
  • Twitter
  • LinkedIn
  • JASCO Sales
  • 800-333-5272

Receive the latest promotions and special offers

  • This field is for validation purposes and should be left unchanged.
  • Careers
  • Press Kit
  • JASCO Privacy Policy
  • Sitemap
  • Environmental Policy

© , JASCO. All Rights Reserved.