Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins

March 27, 2020

Title

Identification of the Fusion Peptide-Containing Region in Betacoronavirus Spike Glycoproteins

Author

Xiuyuan Ou, Wangliang Zheng, Yiwei Shan, Zhixia Mu, Samuel R. Dominguez, Kathryn V. Holmes, Zhaohui Qian

Year

2016

Journal

Journal of Virology

Abstract

The fusion peptides (FP) play an essential role in fusion of viral envelope with cellular membranes. The location and properties of the FPs in the spike (S) glycoproteins of different coronaviruses (CoV) have not yet been determined. Through amino acid sequence analysis of S proteins of representative CoVs, we identified a common region as a possible FP (pFP) that shares the characteristics of FPs of class I viral fusion proteins, including high Ala/Gly content, intermediate hydrophobicity, and few charged residues. To test the hypothesis that this region contains the CoV FP, we systemically mutated every residue in the pFP of Middle East respiratory syndrome betacoronavirus (MERS-CoV) and found that 11 of the 22 residues in the pFP (from G953 to L964, except for A956) were essential for S protein-mediated cell-cell fusion and virus entry. The synthetic MERS-CoV pFP core peptide (955IAGVGWTAGL964) induced extensive fusion of liposome membranes, while mutant peptide failed to induce any lipid mixing. We also selectively mutated residues in pFPs of two other β-CoVs, severe acute respiratory syndrome coronavirus (SARS-CoV) and mouse hepatitis virus (MHV). Although the amino acid sequences of these two pFPs differed significantly from that of MERS-CoV and each other, most of the pFP mutants of SARS-CoV and MHV also failed to mediate membrane fusion, suggesting that these pFPs are also the functional FPs. Thus, the FPs of 3 different lineages of β-CoVs are conserved in location within the S glycoproteins and in their functions, although their amino acid sequences have diverged significantly during CoV evolution.

Instrument

J-815

Keywords

Circular dichroism, Secondary structure, Ligand binding, Medicinal, Biochemistry