Effect of protein structure and/or conformation on the dityrosine cross-linking induced by haem-hydrogen peroxide

July 28, 2017

Title

Effect of protein structure and/or conformation on the dityrosine cross-linking induced by haem-hydrogen peroxide

Author

Zhigang Ke, Qing Huang

Year

2016

Journal

Biochimica et Biophysica Acta (BBA) - General Subjects

Abstract

Haem, an essential cofactor in aerobic organisms, can cause oxidative stress and impose toxic effects on tissues and organs. It can induce aggregation of proteins via dityrosine cross-linking and cause neurodegenerative diseases. Although dityrosine cross-linking in many proteins induced by haem has been reported, not all the proteins have the same effect or the efficiency of cross-linking varies, while the reason has not been clarified. The correlation of protein structure/conformation with its aggregation tendency via dityrosine induced by hematin (oxidized form of haem) in the presence of hydrogen peroxide (H2O2) was studied through reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), fluorescence and circular dichroism (CD) measurements, and the mechanism was investigated by performing UV–Vis absorbance, Raman spectroscopy and low-temperature electron spin resonance (ESR) experiments. It was found that proteins in unstructured state are more readily to be cross-linked via dityrosine formation by hematin-H2O2. The unstructured protein without steric effect can coordinate with hematin to form six-coordinated protein-hematin complex, in which the produced tyrosyl radicals by H2O2 are with high tendency to dimerize to form dityrosine. Our results demonstrate that protein structure/conformation can affect its coordination state with haem, and the tendency of reaction of two tyrosyl radicals, further influencing the yield and efficiency of dityrosine cross-linking in the presence of H2O2.

Instrument

J-810

Keywords

Circular dichroism, Protein denaturation, Protein folding, Secondary structure, Ligand binding, Biochemistry