Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy

July 28, 2017

Title

Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy

Author

Tunde N. Toth, Neha Rai, Katalin Solymosi, Ottó Zsiros, Wolfgang P. Schröder, Győző Garab, Herbert van Amerongen, Peter Hortone, László Kovács

Year

2016

Journal

Biochimica et Biophysica Acta (BBA) - Bioenergetics

Abstract

Macro-organisation of the protein complexes in plant thylakoid membranes plays important roles in the regulation and fine-tuning of photosynthetic activity. These delicate structures might, however, undergo substantial changes during isolating the thylakoid membranes or during sample preparations, e.g., for electron microscopy. Circular-dichroism (CD) spectroscopy is a non-invasive technique which can thus be used on intact samples. Via excitonic and psi-type CD bands, respectively, it carries information on short-range excitonic pigment–pigment interactions and the macro-organisation (chiral macrodomains) of pigment–protein complexes (psi, polymer or salt-induced). In order to obtain more specific information on the origin of the major psi-type CD bands, at around (+)506, (−)674 and (+)690 nm, we fingerprinted detached leaves and isolated thylakoid membranes of wild-type and mutant plants and also tested the effects of different environmental conditions in vivo. We show that (i) the chiral macrodomains disassemble upon mild detergent treatments, but not after crosslinking the protein complexes; (ii) in different wild-type leaves of dicotyledonous and monocotyledonous angiosperms the CD features are quite robust, displaying very similar excitonic and psi-type bands, suggesting similar protein composition and (macro-) organisation of photosystem II (PSII) supercomplexes in the grana; (iii) the main positive psi-type bands depend on light-harvesting protein II contents of the membranes; (iv) the (+)506 nm band appears only in the presence of PSII–LHCII supercomplexes and does not depend on the xanthophyll composition of the membranes. Hence, CD spectroscopy can be used to detect different macro-domains in the thylakoid membranes with different outer antenna compositions in vivo.

Instrument

J-815

Keywords

Circular dichroism, Biochemistry