Properties of polyplexes formed through interaction between hydrophobically-modified poly(ethylene imine)s and calf thymus DNA in aqueous solution

July 28, 2017

Title

Properties of polyplexes formed through interaction between hydrophobically-modified poly(ethylene imine)s and calf thymus DNA in aqueous solution

Author

I. C. Bellettini, S. J. Fayad, V. G. Machado, E. Minatti

Year

2017

Journal

Soft Matter

Abstract

Polycationic polymers and DNA form soluble complexes in aqueous solution, which allows the transfer of genetic material into cells. Therefore, these chemically-modified polymers are of interest for use in studies aimed at better transfection efficiency and gene expression along with reduced cytotoxicity. In this study, branched poly(ethylene imine) (PEI) was modified by alkylation with n-alkyl groups (n = 4, 6, 8 and 12 carbons). The polyplexes formed through interaction of the modified PEIs and calf thymus DNA (ctDNA) were investigated using UV-Vis spectrophotometry, ethidium bromide fluorescence emission, circular dichroism spectroscopy, dynamic light scattering, and small-angle X-ray scattering techniques along with the determination of the zeta potential and viscosity. According to the results obtained, the formation of ctDNA–PEI polyplexes occurs in three steps. Firstly, when a small amount of polyelectrolyte is present the ctDNA chains are partially compacted. Subsequently, with the addition of more polyelectrolyte, the complexes have a null charge density and micrometric size. Lastly, with a higher concentration of PEI, the ctDNA is fully compacted by the PEI chains, leading to positively charged complexes with Rhvalues in the range of 52.0–86.0 nm. The viscosity and SAXS analysis suggested that the unmodified PEI exhibits the strongest interaction and promotes the best ctDNA condensation.

Instrument

J-815

Keywords

Circular dichroism, DNA structure, Polymers, Biochemistry