Contributions of the Lectin and Polypeptide Binding Sites of Calreticulin to Its Chaperone Functions in Vitro and in Cells

July 28, 2017

Title

Contributions of the Lectin and Polypeptide Binding Sites of Calreticulin to Its Chaperone Functions in Vitro and in Cells

Author

Ronnie Lum, Samar Ahmad, Seo Jung Hong, Daniel C. Chapman, Guennadi Kozlov, David B. Williams

Year

2016

Journal

The Journal of Biological Chemistry

Abstract

Calreticulin is a lectin chaperone of the endoplasmic reticulum that interacts with newly synthesized glycoproteins by binding to Glc1Man9GlcNAc2 oligosaccharides as well as to the polypeptide chain. In vitro, the latter interaction potently suppresses the aggregation of various non-glycosylated proteins. Although the lectin-oligosaccharide association is well understood, the polypeptide-based interaction is more controversial because the binding site on calreticulin has not been identified, and its significance in the biogenesis of glycoproteins in cells remains unknown. In this study, we identified the polypeptide binding site responsible for the in vitro aggregation suppression function by mutating four candidate hydrophobic surface patches. Mutations in only one patch, P19K/I21E and Y22K/F84E, impaired the ability of calreticulin to suppress the thermally induced aggregation of non-glycosylated firefly luciferase. These mutants also failed to bind several hydrophobic peptides that act as substrate mimetics and compete in the luciferase aggregation suppression assay. To assess the relative contributions of the glycan-dependent and -independent interactions in living cells, we expressed lectin-deficient, polypeptide binding-deficient, and doubly deficient calreticulin constructs in calreticulin-negative cells and monitored the effects on the biogenesis of MHC class I molecules, the solubility of mutant forms of α1-antitrypsin, and interactions with newly synthesized glycoproteins. In all cases, we observed a profound impairment in calreticulin function when its lectin site was inactivated. Remarkably, inactivation of the polypeptide binding site had little impact. These findings indicate that the lectin-based mode of client interaction is the predominant contributor to the chaperone functions of calreticulin within the endoplasmic reticulum.

Instrument

J-810

Keywords

Circular dichroism, Secondary structure, Ligand binding, Thermal stability, Thermodynamics, Biochemistry