Key residues for the oligomerization of Aβ42 protein in Alzheimer’s disease

May 22, 2018

Title

Key residues for the oligomerization of Aβ42 protein in Alzheimer’s disease

Author

Sam Ngo, Zhefeng Guo

Year

2011

Journal

Biochemical and Biophysical Research Communications

Abstract

Deposition of amyloid fibrils consisting of amyloid β (Aβ) protein as senile plaques in the brain is a pathological hallmark of Alzheimer’s disease. However, a growing body of evidence shows that soluble Aβ oligomers correlate better with dementia than fibrils, suggesting that Aβ oligomers may be the primary toxic species. The structure and oligomerization mechanism of these Aβ oligomers are crucial for developing effective therapeutics. Here we investigated the oligomerization of Aβ42 in the context of a fusion protein containing GroES and ubiquitin fused to the N-terminus of Aβ sequence. The presence of fusion protein partners, in combination with a denaturing buffer containing 8 M urea at pH 10, is unfavorable for Aβ42 aggregation, thus allowing only the most stable structures to be observed. Transmission electron microscopy showed that Aβ42 fusion protein formed globular oligomers, which bound weakly to thioflavin T and Congo red. SDS–PAGE shows that Aβ42 fusion protein formed SDS-resistant hexamers and tetramers. In contrast, Aβ40 fusion protein remained as monomers on SDS gel, suggesting that the oligomerization of Aβ42 fusion protein is not due to the fusion protein partners. Cysteine scanning mutagenesis at 22 residue positions further revealed that single cysteine substitutions of the C-terminal hydrophobic residues (I31, I32, L34, V39, V40, and I41) led to disruption of hexamer and tetramer formation, suggesting that hydrophobic interactions between these residues are most critical for Aβ42 oligomerization.

Instrument

FP-6200

Keywords

Fluorecence, Protein structure, Aggregation, Ligand binding, Biochemistry