Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer

May 22, 2018

Title

Competitive fluorescence anisotropy/polarization assay for ATP using aptamer as affinity ligand and dye-labeled ATP as fluorescence tracer

Author

Yapiao Li, Linlin Sun, Qiang Zhao

Year

2017

Journal

Talanta

Abstract

We developed an aptamer-based competitive fluorescence anisotropy (FA)/fluorescence polarization (FP) assay for adenosine triphosphate (ATP). Different from the traditional fluorescence polarization immunoassays for small molecules, here DNA aptamer against ATP was used as affinity ligand, and tetramethylrhodamine (TMR) labeled ATP served as fluorescent tracer. The binding between TMR-labeled ATP and aptamer gave large FA due to molecular volume increase and restricted rotation of the dye-labeled ATP. When ATP was added in solution, ATP competitively displaced the TMR-labeled ATP from aptamer affinity complex, causing decrease of FA of TMR-labeled ATP. The buffer containing MgCl2 and incubation at low temperature were preferred for large FA change in the FA assay. The FA change was further enhanced in this competitive FA assay by increasing the molecular weight of aptamer through extension of aptamer sequences or conjugating streptavidin protein on aptamer. This method allowed for the detection of ATP in the range from 0.5 μM to 1 mM, generating the maximum FA change about 0.187 (corresponding maximum FP change about 0.242). The detection of ATP spiked in diluted urine or serum sample was achieved, showing capability for analysis in complex sample matrix. This assay also enabled the detection of the analogues of ATP, e.g. adenosine, adenosine monophosphate (AMP), and adenosine diphosphate (ADP) with similar sensitivity. This aptamer-based competitive FA assay takes advantages of aptamer in ease of synthesis, good thermal stability, and facile modulating the molecular mass of aptamer.

Instrument

FP-8300

Keywords

Fluorescence, Anisotropy, DNA binding, Ligand binding, Chemical stability, Thermal stability, Biochemistry, Materials