Connexin43 Carboxyl-Terminal Domain Directly Interacts with p-Catenin

April 9, 2019

Title

Connexin43 Carboxyl-Terminal Domain Directly Interacts with p-Catenin

Author

Gaelle Spagnol, Andrew J. Trease, Li Zheng, Mirtha Gutierrez, Ishika Basu, Cleofes Sarmiento, Gabriella Moore, Matthew Cervantes, Paul L. Sorgen

Year

2018

Journal

International Journal of Molecular Sciences

Abstract

Activation of Wnt signaling induces Connexin43 (Cx43) expression via the transcriptional activity of β-catenin, and results in the enhanced accumulation of the Cx43 protein and the formation of gap junction channels. In response to Wnt signaling, β-catenin co-localizes with the Cx43 protein itself as part of a complex at the gap junction plaque. Work from several labs have also shown indirect evidence of this interaction via reciprocal co-immunoprecipitation. Our goal for the current study was to identify whether β-catenin directly interacts with Cx43, and if so, the location of that direct interaction. Identifying residues involved in direct protein–protein interaction is of importance when they are correlated to the phosphorylation of Cx43, as phosphorylation can modify the binding affinities of Cx43 regulatory protein partners. Therefore, combining the location of a protein partner interaction on Cx43 along with the phosphorylation pattern under different homeostatic and pathological conditions will be crucial information for any potential therapeutic intervention. Here, we identified that β-catenin directly interacts with the Cx43 carboxyl-terminal domain, and that this interaction would be inhibited by the Src phosphorylation of Cx43CT residues Y265 and Y313.

Instrument

J-815

Keywords

Circular dichroism, Secondary structure, Biochemistry