Switching of Monomer Fluorescence, Charge‐Transfer Fluorescence, and Room‐Temperature Phosphorescence Induced by Aromatic Guest Inclusion in a Supramolecular Host

April 9, 2019

Title

Switching of Monomer Fluorescence, Charge‐Transfer Fluorescence, and Room‐Temperature Phosphorescence Induced by Aromatic Guest Inclusion in a Supramolecular Host

Author

Toshikazu Ono, Ai Taema, Aiko Goto, Yoshio Hisaeda

Year

2018

Journal

Chemistry A European Journal

Abstract

Crystal engineering of three‐component crystals with guest‐dependent photoluminescence switching, including (i) crystallization‐induced emission enhancement, (ii) intermolecular charge‐transfer emission, and (iii) room‐temperature phosphorescence under ultraviolet irradiation, was demonstrated. Our strategy was based on the confinement of aromatic guests in a supramolecular host (denoted as EBPDI–TPFB) composed of 5,5'‐(ethyne‐1,2‐diyl)bis(2‐pyridin‐3‐yl‐isoindoline‐1,3‐dione (EBPDI) with two tris(pentafluorophenyl)borane (TPFB) molecules linked by B–N dative bonds that acted as Lewis pairs. The single‐crystal X‐ray structures of complexes with eight different guests were collected, revealing that the size and/or shape of the supramolecular host EBPDI–TPFB was modulated by the included guest molecules. The excellent guest inclusion ability of EBPDI–TPFB allowed systematic photoluminescence regulation of the complexes, which exhibited multicolor emissions in the crystalline state. Photoluminescence switching characteristics of the complexes were observed upon removing the guests or mechanical grinding of the crystals. These results indicated that using the host–guest chemistry of multicomponent crystals not only facilitates crystallization, but also can reveal hidden optical functions by combining molecules of interest, which should contribute to the fields of physical chemistry and materials science.

Instrument

FP-8300, V-670

Keywords

Fluorescence, Photoluminescence, Solid state, Organic chemistry, Optical properties, Materials, Diffuse reflectance