Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site

November 13, 2019

Title

Crystal structures of cholera toxin in complex with fucosylated receptors point to importance of secondary binding site

Author

Joel B. Heim, Vesna Hodnik, Julie E. Heggelund, Gregor Anderluh, Ute Krengel

Year

2019

Journal

Scientific Reports

Abstract

Cholera is a life-threatening diarrhoeal disease caused by the human pathogen Vibrio cholerae. Infection occurs after ingestion of the bacteria, which colonize the human small intestine and secrete their major virulence factor – the cholera toxin (CT). The GM1 ganglioside is considered the primary receptor of the CT, but recent studies suggest that also fucosylated receptors such as histo-blood group antigens are important for cellular uptake and toxicity. Recently, a special focus has been on the histo-blood group antigen Lewisx (Lex), however, where and how the CT binds to Lex remains unclear. Here we report the high-resolution crystal structure (1.5 Å) of the receptor-binding B-subunits of the CT bound to the Lex trisaccharide, and complementary quantitative binding data for CT holotoxins. Lex, and also L-fucose alone, bind to the secondary binding site of the toxin, distinct from the GM1 binding site. In contrast, fucosyl-GM1 mainly binds to the primary binding site due to high-affinity interactions of its GM1 core. Lex is the first histo-blood group antigen of non-secretor phenotype structurally investigated in complex with CT. Together with the quantitative binding data, this allows unique insight into why individuals with non-secretor phenotype are more prone to severe cholera than so-called ‘secretors’.

Instrument

J-810

Keywords

Circular dichroism, Secondary structure, Protein folding, Biochemistry