Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies

March 24, 2020

Title

Bioinspired supramolecular nanosheets of zinc chlorophyll assemblies

Author

Sunao Shoji, Tetsuya Ogawa, Shogo Matsubara, Hitoshi Tamiaki

Year

2019

Journal

Scientific Reports

Abstract

Two-dimensional sheet-like supramolecules have attracted much attention from the viewpoints of their potential application as functional (nano)materials due to unique physical and chemical properties. One of the supramolecular sheet-like nanostructures in nature is visible in the self-assemblies of bacteriochlorophyll-c–f pigments inside chlorosomes, which are major components in the antenna systems of photosynthetic green bacteria. Herein, we report artificial chlorosomal supramolecular nanosheets prepared by the self-assembly of a synthetic zinc 31-methoxy-chlorophyll derivative having amide and urea groups in the substituent at the 17-position. The semi-synthetic zinc chlorophyll derivative kinetically formed dimeric species and transformed into more thermodynamically stable chlorosomal J-aggregates in the solid state. The kinetically and thermodynamically formed self-assemblies had particle-like and sheet-like supramolecular nanostructures, respectively. The resulting nanosheets of biomimetic chlorosomal J-aggregates had flat surfaces and well-ordered supramolecular structures. The artificial sheet-like nanomaterial mimicking chlorosomal bacteriochlorophyll-c–f J-aggregates was first constructed by the model molecule, and is potentially useful for various applications including artificial light-harvesting antennas and photosyntheses.

Instrument

J-720

Keywords

Circular dichroism, Coordination chemistry, Chemical stability, Nanostructures, Materials