High Performance Thick‐Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm

March 24, 2020

Title

High Performance Thick‐Film Nonfullerene Organic Solar Cells with Efficiency over 10% and Active Layer Thickness of 600 nm

Author

Yamin Zhang, Huanran Feng, Lingxian Meng, Yanbo Wang, Meijia Chang, Shitong Li, Ziqi Guo, Chenxi Li, Nan Zheng, Zengqi Xie, Xiangjian Wan, Yongsheng Chen

Year

2019

Journal

Advanced Energy Materials

Abstract

Developing efficient organic solar cells (OSCs) with relatively thick active layer compatible with the roll to roll large area printing process is an inevitable requirement for the commercialization of this field. However, typical laboratory OSCs generally exhibit active layers with optimized thickness around 100 nm and very low thickness tolerance, which cannot be suitable for roll to roll process. In this work, high performance of thick‐film organic solar cells employing a nonfullerene acceptor F–2Cl and a polymer donor PM6 is demonstrated. High power conversion efficiencies (PCEs) of 13.80% in the inverted structure device and 12.83% in the conventional structure device are achieved under optimized conditions. PCE of 9.03% is obtained for the inverted device with active layer thickness of 500 nm. It is worth noting that the conventional structure device still maintains the PCE of over 10% when the film thickness of the active layer is 600 nm, which is the highest value for the NF‐OSCs with such a large active layer thickness. It is found that the performance difference between the thick active layer films based conventional and inverted devices is attributed to their different vertical phase separation in the active layers.

Instrument

V-570

Keywords

Absorption, Solid state, Film thickness, Materials