Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin

July 30, 2020

Title

Lignin nanoparticles as a promising vaccine adjuvant and delivery system for ovalbumin

Author

Mohammed S. Alqahtani, Mohsin Kazi, Muhammad Z. Ahmad, Rabbani Syed, Mohammad A. Alsenaidy, Salem A. Albraiki

Year

2020

Journal

International Journal of Biological Macromolecules

Abstract

Vaccination is the most effective strategy of preventing and treating infectious diseases and the most significant issue in the development of potent vaccines is the sufficient immunogenicity and safety of vaccines. The main goal of the present study is to develop a potent and safe vaccine adjuvant that can also stabilize antigen formulations during preparation and storage. In this study, the model antigen ovalbumin (OVA) was encapsulated in polymeric nanoparticles based on lignin (OVA-LNPs). The nanoparticles had a particle size of 216 nm and a low polydispersity index. The nanoparticles were negatively charged (−26.7 mV) with high encapsulation efficiency 81.6% of OVA antigen. In vitro studies of the nanoparticles were tested against dendritic cells (DCs), specialized antigen-presenting cells (APCs). The results showed no cytotoxic effect from LNPs and a significantly higher percentage of dendritic cells have taken up the antigen when encapsulated inside LNPs in contrast to free OVA. The nanoparticle was administered intradermally to BALB/c mice and the resulting time-dependent systemic immune responses towards OVA were assessed by measuring the OVA-specific IgG titers using an enzyme-linked immunosorbent assay (ELISA). In vivo immunization with OVA-LNPs induced a stronger IgG antibody response than that induced by free OVA or alum adjuvanted OVA. Enhanced immunization by OVA-LNPs was attributed to the observed efficient uptake of the antigen by dendritic cells. These findings demonstrate that LNPs are promising to be used as vaccine adjuvant and delivery system for the induction of long-term immune responses.

Instrument

FP-8300

Keywords

Fluorescence, Quantitation, Nanostructures, Materials, Biochemistry