Investigating binding dynamics of trans resveratrol to HSA for an efficient displacement of aflatoxin B1 using spectroscopy and molecular simulation

February 24, 2022

Title

Investigating binding dynamics of trans resveratrol to HSA for an efficient displacement of aflatoxin B1 using spectroscopy and molecular simulation

Author

Mohd Aamir Qureshi & Saleem Javed

Year

2022

Journal

Scientific Reports

Abstract

Resveratrol is a polyphenol belonging to the class stilbenes. The active and stable form of resveratrol is trans-resveratrol. This polyphenol is bestowed with numerous biological properties. Aflatoxin B1 is a hepato-carcinogen and mutagen that is produced by Aspergillus species. In this study, the interaction of trans-resveratrol with HSA followed by competitive dislodging of AFB1 from HSA by trans-resveratrol has been investigated using spectroscopic studies. The UV-absorption studies revealed ground state complex formation between HSA and trans-resveratrol. Trans-resveratrol binds strongly to HSA with the binding constant of ~ 107 M−1 to a single binding site (n = 1.58), at 298.15 K. The Stern–Volmer quenching constant was calculated as 7.83 × 104 M−1 at 298.15 K, suggesting strong fluorescence quenching ability of trans-resveratrol. Site markers displacement assay projected subdomain IIA as the binding site of trans-resveratrol to HSA. The molecular docking approach envisages the amino acid residues involved in the formation of the binding pocket. As confirmed from the site marker displacement assays, both trans-resveratrol and AFB1 binds to HSA in the same binding site, subdomain IIA. The study explores the ability of trans-resveratrol to displace AFB1 from the HSA-AFB1 complex, thereby affecting the toxicokinetic behavior of AFB1 associated with AFB1 exposure.

Instrument

J-1500

Keywords

Aspergillus species, HAS