Title
Photoprogrammable circularly polarized phosphorescence switching of chiral helical polyacetylene thin films
Author
Zizhao Huang, Zhenyi He, Bingbing Ding, He Tian & Xiang Ma
Year
2022
Journal
Nature Communications
Abstract
The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Here, a type of photoinduced circularly polarized RTP materials are constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. These substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of the films under UV light irradiation endow materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as anti-counterfeiting materials involving photoprogrammability.
Full Article
Instrument
J-815, CPL-200
Keywords
CPL,chiral, helical, polyacetylene, film