Structural and biophysical characterization of the Borna disease virus 1 phosphoprotein

February 24, 2023

Title

Structural and biophysical characterization of the Borna disease virus 1 phosphoprotein

Author

Jack D. Whitehead,a,b‡ Jonathan M. Grimesa and Jeremy R. Keowna

Year

2023

Journal

Structural Biology Communications

Abstract

Bornaviruses are RNA viruses with a mammalian, reptilian, and avian host range. The viruses infect neuronal cells and in rare cases cause a lethal encephalitis. The family Bornaviridae are part of the Mononegavirales order of viruses, which contain a nonsegmented viral genome. Mononegavirales encode a viral phosphoprotein (P) that binds both the viral polymerase (L) and the viral nucleoprotein (N). The P protein acts as a molecular chaperone and is required for the formation of a functional replication/transcription complex. In this study, the structure of the oligomerization domain of the phosphoprotein determined by X-ray crystallography is reported. The structural results are complemented with biophysical characterization using circular dichroism, differential scanning calorimetry and small-angle X-ray scattering. The data reveal the phospho­protein to assemble into a stable tetramer, with the regions outside the oligomerization domain remaining highly flexible. A helix-breaking motif is observed between the α-helices at the midpoint of the oligomerization domain that appears to be conserved across the Bornaviridae. These data provide information on an important component of the bornavirus replication complex.

Instrument

J-815

Keywords

RNA, virus, structure,