Skip to content

JASCO JASCO

  • News
  • Events
  • E-Store
  • My Account
  • Contact Us
  • Worldwide
Search
Click to view menu
MENUMENU
  • Products
    • Chromatography
      • HPLC
      • RHPLC
      • UHPLC
      • LC-MS
      • Preparative LC
      • Analytical SFC
      • Semi-Preparative SFC
      • Hybrid SFC
      • Fuel Analysis by SFC-FID
      • Preparative SFC
      • Supercritical Fluid Extraction
      • Chromatography Software
    • Molecular Spectroscopy
      • Circular Dichroism
      • High-Throughput CD
      • Vibrational CD
      • Circularly Polarized Luminescence (CPL)
      • Polarimeters
      • FTIR Spectrometers
      • FTIR Microscopy
      • FTIR Portable
      • Raman Microscopy
      • Palmtop Raman Spectrometer
      • Probe Raman
      • UV-Visible/NIR Spectrophotometers
      • UV-Visible/NIR Microscopy
      • Fluorescence Spectrophotometers
      • Film Thickness
      • Spectra Manager™ Suite
    • Refurbished
      • Refurbished HPLC Systems
      • HPLC Switching Valves
      • FTIR Accessories
  • Service
    • Service and Support Plans
    • Service Request Form
  • Applications
  • KnowledgeBase
  • Learning Center
    • Best Practice
      • Circular Dichroism Tips & Tricks for Biological Samples
      • CD Scale Calibration with ACS
      • Fluorescence Tips & Tricks
      • Raman Spectroscopy Tips & Tricks
    • Training Videos
      • ChromNAV
      • SF-NAV
      • Circular Dichroism
      • UV-Visible/NIR
      • Fluorescence
    • Training Seminars
      • Training Registration Form
    • Webinars
    • eBooks
    • Theory
      • Theory of Molecular Spectroscopy
      • Chromatography
  • About Us
    • President’s Message
    • Contact
    • History
    • Careers
  • News
  • Events
  • Worldwide
  • Shop
  • My Account
  • Contact Us

Home / Applications / Analysis of Sterols by UHPLC (reverse phase chromatography)

  • Industry

  • Technique

Analysis of Sterols by UHPLC (reverse phase chromatography)

By Heather Haffner

PDF IconDownload This Application

January 5, 2024

Introduction

Analysis of Sterols by UHPLC

This application note reports the analysis of Sterols by UHPLC. Sterols can be derived from plant material – plant sterol (phytosterol), or from animals – animal sterol (zoosterol). A commonly occurring zoosterol is cholesterol, this molecule is an important component found in animal cell membranes.

Recent research has revealed that there is no significant relationship between the consumption of dietary cholesterol and serum (blood) cholesterol levels. However, in general, dietary patterns that are lower in cholesterol are recommended for reducing the risks of cardiovascular disease.

Phytosterol inhibits the absorption of cholesterol by internal organs, so it helps in reducing physiological cholesterol levels. Therefore, the analysis and quantitation of sterols is important in food production and quality control.

This application note illustrates the analysis of several different sterol standard samples (four types of phytosterols and cholesterol (shown in Fig. 1)) using a UHPLC column with 1.9 μm particles. Additionally, a mayonnaise containing phytosterol and a conventional mayonnaise have also been analyzed.

Experimental

Experimental conditions for the analysis of sterols

Chemical structure of various sterols

Keywords

410009XRE, Sterol, UHPLC, Phytosterol, Cholesterol, Unifinepak C18 column, UV detector, HPLC

Results

Fig.2 Chromatogram of sterol standard sample. THF solutions of 10 mg/mL sterols were prepared as stock solutions, and diluted with acetonitrile to prepare 0.5 mg/mL standard samples.

As shown in Fig.2, a high resolution UHPLC column (2.0 mm ID x 150 mm L, 1.9 μm particles) completely separates campesterol (peak 3) and stigmasterol (peak 4) with baseline resolution.

Chromatogram of the standard sample of sterols

Next, two mayonnaise samples were measured; the first contained phytosterol, and the second a more commonly used mayonnaise. Figs. 3 and 4 show the pretreatment procedure of each sample. As shown in the Figs. 3 and 4, the pretreatment procedures are different for each sample.

pretreatment procedures are different for each sample

As shown in Fig. 5, UHPLC could be used to clearly identify several different sterols – phytosterol; campesterol, stigmasterol, and β-sitosterol.

In this measurement, components which are strongly retained are included in this sample, these are difficult to remove during pre-treatment. Therefore, the column must be flushed with THF (B solvent) between sample measurements.

Chromatogram of sampling containing phytosterol

During pretreatment of the sample of common mayonnasie, dilution with acetonitrile was not performed. Therefore, it should be noted that the standard sample concentration in Fig. 6 is ten times higher than that in Fig. 5.

Fig. 6 indicates that a low level of phytosterol is present in the common mayonnaise. This may be due to plant oil being used in the production of this mayonnaise.

These results show that the UHPLC is a fast, accurate and reliable method for the analysis of sterols.

Chromatogram of common semi-solid dressing

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.

Featured Products:

  • HPLC Detector

    Detectors

  • Column Ovens

  • UV-Visible Detectors

About the Author

JASCO Application Note

Analysis of Sterols by UHPLC (reverse phase chromatography)

Introduction

Analysis of Sterols by UHPLC

This application note reports the analysis of Sterols by UHPLC. Sterols can be derived from plant material – plant sterol (phytosterol), or from animals – animal sterol (zoosterol). A commonly occurring zoosterol is cholesterol, this molecule is an important component found in animal cell membranes.

Recent research has revealed that there is no significant relationship between the consumption of dietary cholesterol and serum (blood) cholesterol levels. However, in general, dietary patterns that are lower in cholesterol are recommended for reducing the risks of cardiovascular disease.

Phytosterol inhibits the absorption of cholesterol by internal organs, so it helps in reducing physiological cholesterol levels. Therefore, the analysis and quantitation of sterols is important in food production and quality control.

This application note illustrates the analysis of several different sterol standard samples (four types of phytosterols and cholesterol (shown in Fig. 1)) using a UHPLC column with 1.9 μm particles. Additionally, a mayonnaise containing phytosterol and a conventional mayonnaise have also been analyzed.

Experimental

Experimental conditions for the analysis of sterols

Chemical structure of various sterols

Results

Fig.2 Chromatogram of sterol standard sample. THF solutions of 10 mg/mL sterols were prepared as stock solutions, and diluted with acetonitrile to prepare 0.5 mg/mL standard samples.

As shown in Fig.2, a high resolution UHPLC column (2.0 mm ID x 150 mm L, 1.9 μm particles) completely separates campesterol (peak 3) and stigmasterol (peak 4) with baseline resolution.

Chromatogram of the standard sample of sterols

Next, two mayonnaise samples were measured; the first contained phytosterol, and the second a more commonly used mayonnaise. Figs. 3 and 4 show the pretreatment procedure of each sample. As shown in the Figs. 3 and 4, the pretreatment procedures are different for each sample.

pretreatment procedures are different for each sample

As shown in Fig. 5, UHPLC could be used to clearly identify several different sterols – phytosterol; campesterol, stigmasterol, and β-sitosterol.

In this measurement, components which are strongly retained are included in this sample, these are difficult to remove during pre-treatment. Therefore, the column must be flushed with THF (B solvent) between sample measurements.

Chromatogram of sampling containing phytosterol

During pretreatment of the sample of common mayonnasie, dilution with acetonitrile was not performed. Therefore, it should be noted that the standard sample concentration in Fig. 6 is ten times higher than that in Fig. 5.

Fig. 6 indicates that a low level of phytosterol is present in the common mayonnaise. This may be due to plant oil being used in the production of this mayonnaise.

These results show that the UHPLC is a fast, accurate and reliable method for the analysis of sterols.

Chromatogram of common semi-solid dressing

Keywords

410009XRE, Sterol, UHPLC, Phytosterol, Cholesterol, Unifinepak C18 column, UV detector, HPLC

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.
28600 Mary’s Court, Easton, MD 21601 USA • (800) 333-5272 • Fax: (410) 822-7526 • jascoinc.com/applications

Close

Designed in Tokyo. TRUSTED globally.

View our support plans

Connect with JASCO

  • Facebook
  • Twitter
  • LinkedIn
  • JASCO Sales
  • 800-333-5272

Receive the latest promotions and special offers

  • This field is for validation purposes and should be left unchanged.
  • Careers
  • Press Kit
  • JASCO Privacy Policy
  • Sitemap
  • Environmental Policy

© , JASCO. All Rights Reserved.