Skip to content

JASCO JASCO

  • News
  • Events
  • E-Store
  • My Account
  • Contact Us
  • Worldwide
Search
Click to view menu
MENUMENU
  • Products
    • Chromatography
      • HPLC
      • RHPLC
      • UHPLC
      • LC-MS
      • Preparative LC
      • Analytical SFC
      • Semi-Preparative SFC
      • Hybrid SFC
      • Fuel Analysis by SFC-FID
      • Preparative SFC
      • Supercritical Fluid Extraction
      • Chromatography Software
    • Molecular Spectroscopy
      • Circular Dichroism
      • High-Throughput CD
      • Vibrational CD
      • Circularly Polarized Luminescence (CPL)
      • Polarimeters
      • FTIR Spectrometers
      • FTIR Microscopy
      • FTIR Portable
      • Raman Microscopy
      • Palmtop Raman Spectrometer
      • Probe Raman
      • UV-Visible/NIR Spectrophotometers
      • UV-Visible/NIR Microscopy
      • Fluorescence Spectrophotometers
      • Film Thickness
      • Spectra Manager™ Suite
    • Refurbished
      • Refurbished HPLC Systems
      • HPLC Switching Valves
      • FTIR Accessories
  • Service
    • Service and Support Plans
    • Service Request Form
  • Applications
  • KnowledgeBase
  • Learning Center
    • Best Practice
      • Circular Dichroism Tips & Tricks for Biological Samples
      • CD Scale Calibration with ACS
      • Fluorescence Tips & Tricks
      • Raman Spectroscopy Tips & Tricks
    • Training Videos
      • ChromNAV
      • SF-NAV
      • Circular Dichroism
      • UV-Visible/NIR
      • Fluorescence
    • Training Seminars
      • Training Registration Form
    • Webinars
    • eBooks
    • Theory
      • Theory of Molecular Spectroscopy
      • Chromatography
  • About Us
    • President’s Message
    • Contact
    • History
    • Careers
  • News
  • Events
  • Worldwide
  • Shop
  • My Account
  • Contact Us

Home / Applications / Quantitative Analysis of Gases using Multi-Component Analysis and Interval Measurement

  • Industry

  • Technique

Quantitative Analysis of Gases using Multi-Component Analysis and Interval Measurement

By John Burchell

PDF IconDownload This Application

May 2, 2024

Introduction

Fourier transform infrared (FTIR) spectrometers are often used for gas analysis in place of dedicated gas detection systems due to their greater flexibility. Gas analyzers are typically used for simple measurement, but in the analysis of mixed gases the results can be erroneous due to the presence of various component gases. Often, a dedicated gas analyzer is selected according to the composition of the gas and it can be difficult to simultaneously analyze components in mixed gas samples. The use of FTIR spectroscopy allows the quantitation of several target gases based on their signature absorption peaks even in a mixture, and almost all gases of interest have an absorption in the mid-infrared spectral range. The simultaneous analyses of individual gases in a mixture can be made by using a calibration curve for each gas component based on their absorption peaks. The simultaneous monitoring of multicomponent gas samples can be made using an FT/IR-4000 of FT/IR-6000 series FTIR spectrometer with gas cell and the ‘Interval Measurement’ application program. A full vacuum FT/IR-6000 with a multi-pass gas cell comprises a gas analysis system capable of providing analyses of very low concentration gases with the elimination of the interference of atmospheric water vapor and carbon dioxide. This application note details the software programs and the various gas cells required for mixed gas analysis.

Software Program Overview for Simultaneous Quantitation of Multi-
Component Samples

  • Simultaneous quantitation of up to 20 components
  • Time interval measurement
  • Multicomponent spectral quantitative analysis
  • Flexible calibration, selection, and exchange of calibration curves
  • Concentration monitoring display
Example of multicomponent measurement using simultaneous quantitation program
Figure 1. Example of multicomponent measurement using simultaneous quantitation program

Figure 1 Example of the simultaneous quantitative analysis program for measurement of a mixed gas sample. The time course monitor of each component gas is simultaneously displayed. Figures 2 and 3 illustrate two dedicated gas monitoring instrument systems.

FT/IR-6600-FV vacuum FTIR spectrometer with 10m gas cell
Figure 3. FT/IR-6600-FV vacuum FTIR spectrometer with 10m gas cell
VIR Field rugged FTIR with 8m gas cell
Figure 2. VIR Field rugged FTIR with 8m gas cell

 

Experimental

Creation and Selection of Component Calibration Curves

The multi-component quantitative analysis software allows the measurement of up to 20 components. For each quantitative analysis, a calibration curve is selected from the calibration curves that have been created. Figures 4 and 5 show the creation and selection dialogs.

Figure 6 shows a methane spectrum and an example of a calibration curve made using an 8m gas cell. The detection limits are dependent on the individual component gas, sample matrix and measurement conditions, including the resolution, number of accumulations and detector. Examples of typical quantitation ranges with respect to gas cell path length are shown below. [These are typical detection limits only and should be verified by actual experimental data according to test requirement.]

Gas component registration dialog
Figure 4. Gas component registration dialog
Gas component selection dialog
Figure 5. Gas component selection dialog
Calibration curve and methane spectrum
Figure 6. Calibration curve and methane spectrum

Keywords

230GA0193-E, Gas Analysis, Methane, Carbon Dioxide, Carbon Monoxide, Formaldehyde, Water, Hydrochloric Acid, Nitrous Oxide, N20, CO2, H20, HCOH, CH4, HCl, CO

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.

Featured Products:

  • Compact fixed range mid-IR spectrometer with options to extend to the NIR/FIR

    FT/IR-4X

  • Highly configurable research grade FTIR spectrometer

    FT/IR-6X

  • Advanced Research Grade Spectrometer

    FT/IR-8X

About the Author

John Burchell is a seasoned JASCO veteran adept with chromatography and spectroscopy products. He is currently the business development manager for both instruments.

JASCO Application Note

Quantitative Analysis of Gases using Multi-Component Analysis and Interval Measurement

Introduction

Fourier transform infrared (FTIR) spectrometers are often used for gas analysis in place of dedicated gas detection systems due to their greater flexibility. Gas analyzers are typically used for simple measurement, but in the analysis of mixed gases the results can be erroneous due to the presence of various component gases. Often, a dedicated gas analyzer is selected according to the composition of the gas and it can be difficult to simultaneously analyze components in mixed gas samples. The use of FTIR spectroscopy allows the quantitation of several target gases based on their signature absorption peaks even in a mixture, and almost all gases of interest have an absorption in the mid-infrared spectral range. The simultaneous analyses of individual gases in a mixture can be made by using a calibration curve for each gas component based on their absorption peaks. The simultaneous monitoring of multicomponent gas samples can be made using an FT/IR-4000 of FT/IR-6000 series FTIR spectrometer with gas cell and the ‘Interval Measurement’ application program. A full vacuum FT/IR-6000 with a multi-pass gas cell comprises a gas analysis system capable of providing analyses of very low concentration gases with the elimination of the interference of atmospheric water vapor and carbon dioxide. This application note details the software programs and the various gas cells required for mixed gas analysis.

Software Program Overview for Simultaneous Quantitation of Multi-
Component Samples

  • Simultaneous quantitation of up to 20 components
  • Time interval measurement
  • Multicomponent spectral quantitative analysis
  • Flexible calibration, selection, and exchange of calibration curves
  • Concentration monitoring display
Example of multicomponent measurement using simultaneous quantitation program
Figure 1. Example of multicomponent measurement using simultaneous quantitation program

Figure 1 Example of the simultaneous quantitative analysis program for measurement of a mixed gas sample. The time course monitor of each component gas is simultaneously displayed. Figures 2 and 3 illustrate two dedicated gas monitoring instrument systems.

FT/IR-6600-FV vacuum FTIR spectrometer with 10m gas cell
Figure 3. FT/IR-6600-FV vacuum FTIR spectrometer with 10m gas cell
VIR Field rugged FTIR with 8m gas cell
Figure 2. VIR Field rugged FTIR with 8m gas cell

 

Experimental

Creation and Selection of Component Calibration Curves

The multi-component quantitative analysis software allows the measurement of up to 20 components. For each quantitative analysis, a calibration curve is selected from the calibration curves that have been created. Figures 4 and 5 show the creation and selection dialogs.

Figure 6 shows a methane spectrum and an example of a calibration curve made using an 8m gas cell. The detection limits are dependent on the individual component gas, sample matrix and measurement conditions, including the resolution, number of accumulations and detector. Examples of typical quantitation ranges with respect to gas cell path length are shown below. [These are typical detection limits only and should be verified by actual experimental data according to test requirement.]

Gas component registration dialog
Figure 4. Gas component registration dialog
Gas component selection dialog
Figure 5. Gas component selection dialog
Calibration curve and methane spectrum
Figure 6. Calibration curve and methane spectrum

Keywords

230GA0193-E, Gas Analysis, Methane, Carbon Dioxide, Carbon Monoxide, Formaldehyde, Water, Hydrochloric Acid, Nitrous Oxide, N20, CO2, H20, HCOH, CH4, HCl, CO

This document has been prepared based on information available at the time of publication and is subject to revision without notice. Although the contents are checked with the utmost care, we do not guarantee their accuracy or completeness. JASCO Corporation assumes no responsibility or liability for any loss or damage incurred as a result of the use of any information contained in this document. Copyright and other intellectual property rights in this document remain the property of JASCO Corporation. Please do not attempt to copy, modify, redistribute, or sell etc. in whole or in part without prior written permission.
28600 Mary’s Court, Easton, MD 21601 USA • (800) 333-5272 • Fax: (410) 822-7526 • jascoinc.com/applications

Close

Designed in Tokyo. TRUSTED globally.

View our support plans

Connect with JASCO

  • Facebook
  • Twitter
  • LinkedIn
  • JASCO Sales
  • 800-333-5272

Receive the latest promotions and special offers

  • This field is for validation purposes and should be left unchanged.
  • Careers
  • Press Kit
  • JASCO Privacy Policy
  • Sitemap
  • Environmental Policy

© , JASCO. All Rights Reserved.