A G-quadruplex structure at the 5′ end of the H19 coding region regulates H19transcription

July 28, 2017

Title

A G-quadruplex structure at the 5′ end of the H19 coding region regulates H19transcription

Author

Mitsuko Fukuhara, Yue Ma, Kazuo Nagasawa, Fumiko Toyoshima

Year

2017

Journal

Scientific Reports

Abstract

The H19 gene, one of the best known imprinted genes, encodes a long non-coding RNA that regulates cell proliferation and differentiation. H19 RNA is widely expressed in embryonic tissues, but its expression is restricted in only a few tissues after birth. However, regulation of H19 gene expression remains poorly understood outside the context of genomic imprinting. Here we identified evolutionarily conserved guanine (G)-rich repeated motifs at the 5′ end of the H19 coding region that are consistent with theoretically deduced G-quadruplex sequences. Circular dichroism spectroscopy and electrophoretic mobility shift assays with G-quadruplex-specific ligands revealed that the G-rich motif, located immediately downstream of the transcription start site (TSS), forms a G-quadruplex structure in vitro. By using a series of mutant forms of H19 harboring deletion or G-to-A substitutions, we found that the H19-G-quadruplex regulates H19 gene expression. We further showed that transcription factors Sp1 and E2F1 were associated with the H19-G-quadruplex to either suppress or promote the H19 transcription, respectively. Moreover, H19 expression during differentiation of mouse embryonic stem cells appears to be regulated by a genomic H19 G-quadruplex. These results demonstrate that the G-quadruplex structure immediately downstream of the TSS functions as a novel regulatory element for H19 gene expression.

Instrument

J-720

Keywords

Circular dichroism, DNA structure, Chemical stability, Thermal stability, Thermodynamics, Biochemistry