Biomimetic non-classical crystallization drives hierarchical structuring of efficient circularly polarized phosphors

June 15, 2022

Title

Biomimetic non-classical crystallization drives hierarchical structuring of efficient circularly polarized phosphors

Author

Li-Zhe Feng, Jing-Jing Wang, Tao Ma, Yi-Chen Yin, Kuang-Hui Song, Zi-Du Li, Man-Man Zhou, Shan Jin, Taotao Zhuang, Feng-Jia Fan, Man-Zhou Zhu & Hong-Bin Yao

Year

2022

Journal

Nature Communications

Abstract

Hierarchically structured chiral luminescent materials hold promise for achieving efficient circularly polarized luminescence. However, a feasible chemical route to fabricate hierarchically structured chiral luminescent polycrystals is still elusive because of their complex structures and complicated formation process. We here report a biomimetic non-classical crystallization (BNCC) strategy for preparing efficient hierarchically structured chiral luminescent polycrystals using well-designed highly luminescent homochiral copper(I)-iodide hybrid clusters as basic units for non-classical crystallization. By monitoring the crystallization process, we unravel the BNCC mechanism, which involves crystal nucleation, nanoparticles aggregation, oriented attachment, and mesoscopic transformation processes. We finally obtain the circularly polarized phosphors with both high luminescent efficiency of 32% and high luminescent dissymmetry factor of 1.5 × 10−2, achieving the demonstration of a circularly polarized phosphor converted light emitting diode with a polarization degree of 1.84% at room temperature. Our designed BNCC strategy provides a simple, reliable, and large-scale synthetic route for preparing bright circularly polarized phosphors.

Instrument

J-1700, J-1500, J-810

Keywords

chiral, luminescent, material, BNCC