Title
Cooperativity in Oxidation Reactions Catalyzed by Cytochrome P450 1A2 HIGHLY COOPERATIVE PYRENE HYDROXYLATION AND MULTIPHASIC KINETICS OF LIGAND BINDING
Author
Christal D. Sohl, Emre M. Isin, Robert L. Eoff, Glenn A. Marsch, Donald F. Stec, F. Peter Guengerich
Year
2008
Journal
The Journal of Biological Chemistry
Abstract
Rabbit liver cytochrome P450 (P450) 1A2 was found to catalyze the 5,6-epoxidation of α-naphthoflavone (αNF), 1-hydroxylation of pyrene, and the subsequent 6-, 8-, and other hydroxylations of 1-hydroxy (OH) pyrene. Plots of steady-state rates of product formation versus substrate concentration were hyperbolic for αNF epoxidation but highly cooperative (Hill n coefficients of 2-4) for pyrene and 1-OH pyrene hydroxylation. When any of the three substrates (αNF, pyrene, 1-OH pyrene) were mixed with ferric P450 1A2 using stopped-flow methods, the changes in the heme Soret spectra were relatively slow and multiphasic. Changes in the fluorescence of all of the substrates were much faster, consistent with rapid initial binding to P450 1A2 in a manner that does not change the heme spectrum. For binding of pyrene to ferrous P450 1A2, the course of the spectra revealed sequential changes in opposite directions, consistent with P450 1A2 being involved in a series of transitions to explain the kinetic multiphasicity as opposed to multiple, slowly interconverting populations of enzyme undergoing the same event at different rates. Models of rabbit P450 1A2 based on a published crystal structure of a human P450 1A2-αNF complex show active site space for only one αNF or for two pyrenes. The spectral changes observed for binding and hydroxylation of pyrene and 1-OH pyrene could be fit to a kinetic model in which hydroxylation occurs only when two substrates are bound. Elements of this mechanism may be relevant to other cases of P450 cooperativity.
Full Article
Instrument
J-810
Keywords
Circular dichroism, Secondary structure, Ligand binding, Biochemistry