Designing Artificial Fluorescent Proteins: Squaraine-LmrR Biophosphors for High Performance Deep-Red Biohybrid Light-Emitting Diodes

January 18, 2022

Title

Designing Artificial Fluorescent Proteins: Squaraine-LmrR Biophosphors for High Performance Deep-Red Biohybrid Light-Emitting Diodes

Author

Sara Ferrara, Sara H. Mejias, Mantas Liutkus, Giacomo Renno, Francesca Stella, Irene Kociolek, Juan Pablo Fuenzalida-Werner, Claudia Barolo, Pedro B. Coto, Aitziber L. Cortajarena, Rubén D. Costa

Year

2022

Journal

ADVANCED FUNCTIONAL MATERIALS

Abstract

Biophosphors with fluorescent proteins (FPs) are promising candidates to replace rare-earth color down-converting filters for white light-emitting diodes (LEDs). There is, however, a lack of deep-red FPs meeting high photostabilities, photoluminescence quantum yields (ϕ), and throughput expression yields. Herein, a new approach for the design of highly emissive and stable deep-red biophosphors combining an artificial FP (Lactococcal multidrug resistance Regulator (LmrR) as protein host and an archetypal red-emitting squaraine (S) as guest) with a polymer network is demonstrated toward high performing deep-red biohybrid LEDs (Bio-HLEDs). At first, the best protein pocket (aromaticity, polarity, charge, etc.) to stabilize S in water is determined using four LmrR variants (position 96 with tryptophan, histidine, phenylalanine, and alanine). Computational and time-resolved spectroscopic findings suggest that the tryptophan is instrumental toward achieving artificial red-emitting FPs with ϕ > 50% stable over weeks. These features are further enhanced in the polymer coating (ϕ > 65% stable over months) without affecting emission color. Finally, deep-red Bio-HLEDs are fabricated featuring external quantum efficiencies of 7% and stabilities of ≈800 h. This represents threefold enhancement compared to reference devices with S-polymer color filters. Overall, this work highlights a new design for highly emissive deep-red biophosphors, achieving record performance in deep-red protein-LEDs.

Instrument

V-630, J-815

Keywords

fluorescent proteins, biohybrid LEDs, protein