Determination of the absolute configurations of chiral organometallic complexes via density functional theory calculations of their vibrational circular dichroism spectra: The chiral chromium tricarbonyl complex of N-pivaloyl-tetrahydroquinoline

July 28, 2017

Title

Determination of the absolute configurations of chiral organometallic complexes via density functional theory calculations of their vibrational circular dichroism spectra: The chiral chromium tricarbonyl complex of N-pivaloyl-tetrahydroquinoline

Author

P. J. Stephens, F.J. Devlin, C. Villani, F. Gasparrini, S. Levi Mortera

Year

2008

Journal

Inorganica Chimica Acta

Abstract

The racemate of the chiral tricarbonyl-η6-arene-chromium(0) complex, tricarbonyl-η6-N-pivaloyl-tetrahydroquinoline-chromium(0), 1, has been synthesized and resolved using chromatography on a (R,R)-Whelk-O1 column. The Absolute Configuration (AC) of 1 has been determined using vibrational circular dichroism (VCD) spectroscopy. The VCD spectrum of 1 has been predicted using the Stephens equation for vibrational rotational strengths, implemented using density functional theory (DFT) in the gaussian program. Using the B3PW91 functional and the 6-311++G (2d,2p) basis set, the predicted VCD spectrum of S-1 is in excellent agreement with the experimental VCD spectrum of (+)-1, leading unambiguously to the AC S-(+). It is concluded that VCD is a useful technique for determining the ACs of chiral organometallic complexes, given the use of optimum functionals and basis sets.

Instrument

J-710

Keywords

Circular dichroism, Absolute configuration, Inorganic chemistry