Title
Functional Rescue of Cataract-Causing αA-G98R-Crystallin by Targeted Compensatory Suppressor Mutations in Human αA-Crystallin
Author
Ashutosh S. Phadte, Sundararajan Mahalingam, Puttur Santhoshkumar, Krishna K. Sharma
Year
2019
Journal
Biochemistry
Abstract
The G98R mutation in αA-crystallin is associated with the onset of presenile cataract and is characterized biochemically by an increased oligomeric mass, altered chaperone function, and loss of structural stability over time. Thus, far, it is not known whether the inherent instability caused by gain-of-charge mutation could be rescued by a compensatory loss of charge mutation elsewhere on the protein. To answer this question, we investigated whether αA-G98R-mediated instability could be rescued through suppressor mutations by introducing site-specific “compensatory” mutations in αA-G98R-crystallin, αA-R21Q/G98R, αA-G98R/R116C, and αA-R157Q/G98R. The recombinant proteins were expressed, purified, characterized, and evaluated by circular dichroism (CD), intrinsic fluorescence, and bis-ANS-binding studies. Chaperone-like activities of recombinant proteins were assessed using alcohol dehydrogenase (ADH) and insulin as unfolding substrates. Far-UV CD studies revealed an increased α-helical content in αA-G98R in comparison to αA-WT, αA-R21Q, R157Q, and the double mutants, αA-R21Q/G98R, and αA-R157Q/G98R. Compared to αA-WT, αA-R21Q, and αA-G98R, the double mutants showed an increased intrinsic tryptophan fluorescence, whereas the highest hydrophobicity (bis-ANS-binding) was shown by αA-G98R. Introduction of a second mutation in αA-G98R reduced its bis-ANS-binding activity. Both αA-R21Q/G98R and αA-R157Q/G98R showed greater chaperone-like activity against ADH aggregation than αA-G98R. However, among the three G98R mutants, only αA-R21Q/G98R protected ARPE-19 cells from H2O2-induced cytotoxicity. These results suggest that the lost chaperone-like activity of αA-G98R-crystallin can be rescued by another targeted mutation and that substitution of αA-R21Q-crystallin at the N-terminal region can rescue a deleterious mutation in the conserved α-crystallin domain of the protein.
Instrument
J-815, FP-750
Keywords
Circular dichroism, Secondary structure, Tertiary structure, Protein stability, Fluorescence, Protein structure, Protein folding, Chemical stability, Biochemistry