Plasmonic Toroidal Metamolecules Assembled by DNA Origami

July 28, 2017

Title

Plasmonic Toroidal Metamolecules Assembled by DNA Origami

Author

Maximilian J. Urban, Palash K. Dutta, Pengfei Wang, Xiaoyang Duan, Xibo Shen, Baoquan Ding, Yonggang Ke, Na Liu

Year

2016

Journal

JACS

Abstract

We show hierarchical assembly of plasmonic toroidal metamolecules that exhibit tailored optical activity in the visible spectral range. Each metamolecule consists of four identical origami-templated helical building blocks. Such toroidal metamolecules show a stronger chiroptical response than monomers and dimers of the helical building blocks. Enantiomers of the plasmonic structures yield opposite circular dichroism spectra. Experimental results agree well with the theoretical simulations. We also show that given the circular symmetry of the structures s distinct chiroptical response along their axial orientation can be uncovered via simple spin-coating of the metamolecules on substrates. Our work provides a new strategy to create plasmonic chiral platforms with sophisticated nanoscale architectures for potential applications such as chiral sensing using chemically based assembly systems.

Instrument

J-1500

Keywords

Circular dichroism, Stereochemistry,