SAXS and other spectroscopic analysis of 12S cruciferin isolated from the seeds of Brassica nigra

July 28, 2017

Title

SAXS and other spectroscopic analysis of 12S cruciferin isolated from the seeds of Brassica nigra

Author

Binish Khaliq, Sven Falke, Amr Negm, Friedrich Buck, Aisha Munawar, Maria Saqib, Seema Mahmood, Malik Shoaib Ahmad, Christian Betzel, Ahmed Akrem

Year

2017

Journal

Journal of Molecular Structure

Abstract

Oilseeds of the plant family Brassicaceae are important for providing both lipid and protein contents to human nutrition. Cruciferins (12S globulins) are seed storage proteins, which are getting attention due to their allergenic and pathogenicity related nature. This study describes the purification and characterization of a trimeric (∼190 kDa) cruciferin protein from the seeds of Brassica nigra (L.). Cruciferin was first partially purified by ammonium sulfate precipitation (30% saturation constant) and further purified by size exclusion chromatography. The N-terminal amino-acid sequence analysis showed 82% sequence homology with cruciferin from Arabidopsis thaliana. The 50–55 kDa monomeric cruciferin produced multiple bands of two major molecular weight ranges (α-polypeptides of 28–32 kDa and β-polypeptides of 17–20 kDa) under reduced conditions of SDS-PAGE. The 2D gel electrophoretic analysis showed the further separation of the bands into their isoforms with major pI ranges between 5.7 and 8.0 (α-polypeptides) and 5.5–8.5 (β-polypeptides). The Dynamic Light Scattering (DLS) showed the monodisperse nature of the cruciferin with hydrodynamic radius of 5.8 ± 0.1 nm confirming the trimeric nature of the protein. The Circular Dichroism (CD) spectra showed both α-helices and β-sheets in the native conformation of the trimeric protein. The pure cruciferin protein (40 mg/ml) was successfully crystallized; however, the crystals diffracted only to low resolution data (8 Å). Small-angle x-ray scattering (SAXS) was applied to gain insights into the three-dimensional structure in solution. SAXS showed that the radius of gyration is 4.24 ± 0.25 nm and confirmed the nearly globular shape. The SAXS based ab initio dummy model of B. nigra cruciferin was compared with 11S globulins (PDB ID: 3KGL) of B. napus which further confirmed a highly similar molecular weight and globular shape indicating a conserved trimerization of B. nigra cruciferin. The comparison of the scattering patterns of both proteins showed a minimized χ2-value of 1.337 confirming a similar molecular structure. This is the first report describing the purification and characterization of a cruciferin protein from seeds of B. nigra.

Instrument

J-815

Keywords

Circular dichroism, Secondary structure, Biochemistry