Structure-Based Rational Design of Small α-Helical Peptides with Broad-Spectrum Activity against Multidrug-Resistant Pathogens

January 31, 2023

Title

Structure-Based Rational Design of Small α-Helical Peptides with Broad-Spectrum Activity against Multidrug-Resistant Pathogens

Author

Sandeep Lohan, Anastasia G. Konshina, Roman G. Efremov, Innokentiy Maslennikov, and Keykavous Parang

Year

2022

Journal

Journal of Medical Chemistry

Abstract

A series of small (7–12 mer) amphipathic cationic peptides were designed and synthesized to create short helical peptides with broad-range bactericidal activity and selectivity toward the bacterial cells. The analysis identified a lead 12-mer peptide 8b with broad-spectrum activity against Gram-positive (MIC = 3.1–6.2 μg/mL) and Gram-negative (MIC = 6.2–12.5 μg/mL) bacteria and selectivity toward prokaryotic versus eukaryotic cells (HC50 = 280 μg/mL, >75% cell viability at 150 μg/mL). The rapid membranolytic action of 8b was demonstrated by a calcein dye leakage assay and confirmed using scanning electron microscopy. According to circular dichroism and NMR spectroscopy, the peptides have an irregular spatial structure in water. A lipid bilayer induced an amphipathic helix only in 12-mer peptides, including 8b. Molecular dynamics simulations provided detailed information about the interaction of 8b and its closest analogues with bacterial and mammalian membranes and revealed the roles of particular amino acids in the activity and selectivity of peptides.

Instrument

J-1500

Keywords

Structure, Peptides, Broad-Spectrum Activity, Multidrug-Resistant Pathogens