Study on the molecular interactions of hydroxylated polycyclic aromatic hydrocarbons with catalase using multi-spectral methods combined with molecular docking

March 24, 2020

Title

Study on the molecular interactions of hydroxylated polycyclic aromatic hydrocarbons with catalase using multi-spectral methods combined with molecular docking

Author

Jing Zhang, Linfeng Chen, Yaxian Zhu, Yong Zhang

Year

2019

Journal

Food Chemistry

Abstract

To reveal the potential effects of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) on catalase (CAT), the interactions of 1-hydroxynaphthalene (1-OHNap), 9-hydroxyphenanthrene (9-OHPhe) and 1-hydroxypyrene (1-OHPyr) with CAT were investigated using multi-spectroscopic and molecular docking techniques. Fluorescence analysis showed that 1-OHNap, 9-OHPhe and 1-OHPyr can form 1:1 complex with CAT, with the binding constant of 6.31 × 103, 1.03 × 104 and 2.96 × 105 L mol−1 at 17 °C. Thermodynamic and docking parameters demonstrated that van der Waals’ force, hydrogen bonds and hydrophobic interactions dominated the three binding processes. Molecular docking also revealed the specific binding mode of OH-PAHs with CAT. Synchronous fluorescence and circular dichroism spectral results indicated that the three OH-PAHs induced varied structural changes of CAT. Furthermore, CAT activity was promoted by 9-OHPhe, but inhibited by either 1-OHNap or 1-OHPyr. Under the maximum experimental concentration of OH-PAHs, the percent change of CAT activity induced by 1-OHNap, 9-OHPhe and 1-OHPyr were 8.42%, 4.26% and 13.21%.

Instrument

J-810

Keywords

Circular dichroism, Secondary structure, Protein stability, Chemical stability, Biochemistry, Food science