The Roles of Fatty-Acid Modification in the Activity of the Anticancer Peptide R-Lycosin-I

October 11, 2018

Title

The Roles of Fatty-Acid Modification in the Activity of the Anticancer Peptide R-Lycosin-I

Author

Cui Jian, Peng Zhang, Jing Ma, Shandong Jian, Qianqian Zhang, Bobo Liu, Songping Liang, Meiyan Liu, Youlin Zeng, Zhonghua Liu

Year

2018

Journal

Molecular Pharmaceutics

Abstract

We previously reported that R-lycosin-I, modified by amino acid substitution from lycosin-I, was a peptide with anticancer activity and a linear amphipathic α-helix conformation and that it can induce cancer cell apoptosis and inhibit cell proliferation. However, the anticancer activity of R-lycosin-I was not highly improved. In order to further improve the anticancer activity of R-lycosin-I, fatty acids with different chain lengths from 12 to 20 carbons were introduced to the N-terminal of R-lycosin-I to yield five lipopeptides (R-C12, R-C14, R-C16, R-C18, R-C20). The physicochemical properties of the five lipopeptides were determined by hydrodynamic size, ζ-potential, and circular dichroism spectroscopy, respectively. Then, the cytotoxic activity of these lipopeptides in A549 cells was evaluated with serum-containing and serum-free media, respectively, showing their anticancer activities were all increased through fatty-acid modification. This may be a result of the increased hydrophobicity and the enhanced interaction with the cancer cell membrane. The cytotoxic activity of R-C16 was 3–4-fold higher than that of the original R-lycosin-I and also was the strongest among all five lipopeptides, whether in serum or serum-free conditions. Compared with R-lycosin-I, the lactate dehydrogenase (LDH) leakage assay and scanning electron microscopy (SEM) indicated that R-C16 had a weakly destructive effect on the cancer cell membrane, but it might cause apoptosis to exert an anticancer activity. Finally, the impacts of fatty-acid length on the physicochemical properties and the anticancer potential of peptide were discussed. Our data consolidate work on fatty-acid-modified anticancer peptides.

Instrument

J-815

Keywords

Circular dichroism, Secondary structure, Chemical stability, Pharmaceutical, Biochemistry