Rational Design of Phase Separating Peptides Based on Phase Separating Protein Sequence of P53

April 20, 2023

Title

Rational Design of Phase Separating Peptides Based on Phase Separating Protein Sequence of P53

Author

Kamagata, Kiyoto, Atsumi Hando, Maulana Ariefai, Nanako Iwaki, Saori Kanbayashi, Ryotaro Koike, and Keisuke Ikeda

Year

2023

Journal

Scientific Reports

Abstract

Artificial phase-separating (PS) peptides can be used in various applications such as microreactors and drug delivery however, the design of artificial PS peptides remains a challenge. This can be attributed to the limitation of PS-relevant residues that drive phase separation by interactions of their pairs in short peptides and the difficulty in the design involving interaction with target PS proteins. In this study, we propose a rational method to design artificial PS peptides that satisfy the requirements of liquid droplet formation and co-phase separation with target PS proteins based on the target PS protein sequence. As a proof of concept, we designed five artificial peptides from the model PS protein p53 using this method and confirmed their PS properties using differential interference contrast and fluorescence microscopy. Single-molecule fluorescent tracking demonstrated rapid diffusion of the designed peptides in their droplets compared to that of p53 in p53 droplets. In addition, size-dependent uptake of p53 oligomers was observed in the designed peptide droplets. Large oligomers were excluded from the droplet voids and localized on the droplet surface. The uptake of high-order p53 oligomers into the droplets was enhanced by the elongated linker of the designed peptides. Furthermore, we found that the designed peptide droplets recruited p53 to suppress gel-like aggregate formation. Finally, we discuss aspects that were crucial in the successful design of the artificial PS peptides.

Instrument

J-720,FP-6500

Keywords

Artificial phase-separating,Liquid–liquid phase separation