Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic-Inorganic Hybrid Perovskite Nanocrystals

July 30, 2020

Title

Strategies to Achieve High Circularly Polarized Luminescence from Colloidal Organic-Inorganic Hybrid Perovskite Nanocrystals

Author

Young-Hoon Kim, Yaxin Zhai, E. Ashley Gaulding, Severin N. Habisreutinger, Taylor Moot, Bryan A Rosales, Haipeng Lu, Abhijit Hazarika, Roman Brunecky, Lance M. Wheeler, Joseph J. Berry, Matthew C. Beard, Joseph M. Luther

Year

2020

Journal

ACS Nano

Abstract

Colloidal metal halide perovskite nanocrystals (NCs) with chiral ligands are outstanding candidates as a circularly polarized luminescence (CPL) light source due to many advantages such as high photoluminescence quantum efficiency, large spin-orbit coupling, and extensive tunability via composition and choice of organic ligands. However, achieving pronounced and controllable polarized light emission remains challenging. Here, we develop strategies to achieve high CPL responses from colloidal formamidinium lead bromide (FAPbBr3) NCs at room temperature using chiral surface ligands. First, we show that replacing a portion of typical ligands (oleylamine) with short chiral ligands ((R)-2-octylamine) during FAPbBr3 NC synthesis results in small and monodisperse NCs which yield high CPL with average luminescence dissymmetry g-factor, glum = 6.8 × 10-2. To the best of our knowledge, this is the highest among reported perovskite materials at room temperature to date and represents around 10-fold improvement over the previously reported colloidal CsPbClxBryI3-x-y NCs. In order to incorporate NCs into any optoelectronic or spintronic application, the NCs necessitate purification which removes a substantial amount of the chiral ligands and extinguishes the CPL signals. To circumvent this issue, we also developed a post-synthetic ligand treatment using a different chiral ligand, (R-/S-)methylbenzylammonium bromide, which also induces a CPL with an average glum = ±1.18 × 10-2. This post-synthetic method is also amenable for long range charge transport since methylbenzylammonium is quite compact in relation to other surface ligands. Our demonstrations of high CPL and glum from both as-synthesized and purified perovskite NCs at room temperature suggest a route to demonstrate colloidal NC based spintronics.

Instrument

J-715

Keywords

Circular dichroism, Nanostructures, Stereochemistry, Materials