Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering

September 22, 2019

Title

Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering

Author

Ayumi Yahata, Haruyuki Ishii, Kosuke Nakamura, Kanako Watanabe, Daisuke Nagao

Year

2019

Journal

Advanced Powder Technology

Abstract

Regularly ordered polymer nanoparticle (PNP) assemblies incorporating gold nanoparticle (Au NP) clusters into the PNP interstices were fabricated by a simultaneous deposition of PNPs and Au NPs on a glass substrate. Monodisperse PNPs with an average size of 66 nm were employed as a template in the co-assembly to create the sub-100 nm periodic Au nanostructures on the substrate. First, mono-layering of PNP array with incorporation of 14 nm Au NPs was performed by a drop-casting to examine the number ratio of Au NPs to PNPs for multi-layering. Absorption spectra of the mono-layered co-assemblies of PNPs and Au NPs were employed to characterize the clustered state of Au NPs in the interstices of mono-layered PNPs. The number ratio suitable for homogeneous incorporation of Au NPs clustered in the interstice was found to be ranged from 6 to 8 in the characterization. Then, multi-layered co-assemblies of PNPs and clustered Au NPs were fabricated by a vertical deposition method with the Au NP number ratio of 8 to PNPs. Lifting rate of the substrate on which the PNPs were deposited was varied in the vertical deposition method to tune the film thickness of NP co-assembly. A decrease in the lifting rate to 1 μm/s could thicken the film to 0.71 μm corresponding to 13 layers of PNPs, resulting in the fabrication of periodic structures of Au NP clusters with a high packing density. Signal-to-noise ratio in the Raman measurement using p-mercaptobenzoic acid as a target molecule was successfully enhanced by multi-layering of the co-assembly, indicating that Au NP clusters were homogeneously incorporated into the interstices of PNPs in the co-assemblies.

Instrument

NRS-5100

Keywords

Raman imaging microscopy, Gold nanoclusters, polymer, nanoparticles